Aromātai
20\sqrt{3}+60\approx 94.641016151
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
40 \sqrt { 6 } \times \frac { \sqrt { 6 } + \sqrt { 2 } } { 4 }
Tohaina
Kua tāruatia ki te papatopenga
10\left(\sqrt{6}+\sqrt{2}\right)\sqrt{6}
Whakakorea atu te tauwehe pūnoa nui rawa 4 i roto i te 40 me te 4.
\left(10\sqrt{6}+10\sqrt{2}\right)\sqrt{6}
Whakamahia te āhuatanga tohatoha hei whakarea te 10 ki te \sqrt{6}+\sqrt{2}.
10\left(\sqrt{6}\right)^{2}+10\sqrt{2}\sqrt{6}
Whakamahia te āhuatanga tohatoha hei whakarea te 10\sqrt{6}+10\sqrt{2} ki te \sqrt{6}.
10\times 6+10\sqrt{2}\sqrt{6}
Ko te pūrua o \sqrt{6} ko 6.
60+10\sqrt{2}\sqrt{6}
Whakareatia te 10 ki te 6, ka 60.
60+10\sqrt{2}\sqrt{2}\sqrt{3}
Tauwehea te 6=2\times 3. Tuhia anō te pūtake rua o te hua \sqrt{2\times 3} hei hua o ngā pūtake rua \sqrt{2}\sqrt{3}.
60+10\times 2\sqrt{3}
Whakareatia te \sqrt{2} ki te \sqrt{2}, ka 2.
60+20\sqrt{3}
Whakareatia te 10 ki te 2, ka 20.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}