Whakaoti mō k
k=320
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
40 = \frac { 1 } { 2 } \cdot k \cdot \frac { 25 } { 100 }
Tohaina
Kua tāruatia ki te papatopenga
40=\frac{1}{2}k\times \frac{1}{4}
Whakahekea te hautanga \frac{25}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 25.
40=\frac{1\times 1}{2\times 4}k
Me whakarea te \frac{1}{2} ki te \frac{1}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
40=\frac{1}{8}k
Mahia ngā whakarea i roto i te hautanga \frac{1\times 1}{2\times 4}.
\frac{1}{8}k=40
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
k=40\times 8
Me whakarea ngā taha e rua ki te 8, te tau utu o \frac{1}{8}.
k=320
Whakareatia te 40 ki te 8, ka 320.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}