Whakaoti mō x
x = \frac{20 \sqrt{285} + 500}{17} \approx 49.272874137
x = \frac{500 - 20 \sqrt{285}}{17} \approx 9.550655275
Graph
Tohaina
Kua tāruatia ki te papatopenga
40+0.085x^{2}-5x=0
Tangohia te 5x mai i ngā taha e rua.
0.085x^{2}-5x+40=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 0.085\times 40}}{2\times 0.085}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 0.085 mō a, -5 mō b, me 40 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 0.085\times 40}}{2\times 0.085}
Pūrua -5.
x=\frac{-\left(-5\right)±\sqrt{25-0.34\times 40}}{2\times 0.085}
Whakareatia -4 ki te 0.085.
x=\frac{-\left(-5\right)±\sqrt{25-13.6}}{2\times 0.085}
Whakareatia -0.34 ki te 40.
x=\frac{-\left(-5\right)±\sqrt{11.4}}{2\times 0.085}
Tāpiri 25 ki te -13.6.
x=\frac{-\left(-5\right)±\frac{\sqrt{285}}{5}}{2\times 0.085}
Tuhia te pūtakerua o te 11.4.
x=\frac{5±\frac{\sqrt{285}}{5}}{2\times 0.085}
Ko te tauaro o -5 ko 5.
x=\frac{5±\frac{\sqrt{285}}{5}}{0.17}
Whakareatia 2 ki te 0.085.
x=\frac{\frac{\sqrt{285}}{5}+5}{0.17}
Nā, me whakaoti te whārite x=\frac{5±\frac{\sqrt{285}}{5}}{0.17} ina he tāpiri te ±. Tāpiri 5 ki te \frac{\sqrt{285}}{5}.
x=\frac{20\sqrt{285}+500}{17}
Whakawehe 5+\frac{\sqrt{285}}{5} ki te 0.17 mā te whakarea 5+\frac{\sqrt{285}}{5} ki te tau huripoki o 0.17.
x=\frac{-\frac{\sqrt{285}}{5}+5}{0.17}
Nā, me whakaoti te whārite x=\frac{5±\frac{\sqrt{285}}{5}}{0.17} ina he tango te ±. Tango \frac{\sqrt{285}}{5} mai i 5.
x=\frac{500-20\sqrt{285}}{17}
Whakawehe 5-\frac{\sqrt{285}}{5} ki te 0.17 mā te whakarea 5-\frac{\sqrt{285}}{5} ki te tau huripoki o 0.17.
x=\frac{20\sqrt{285}+500}{17} x=\frac{500-20\sqrt{285}}{17}
Kua oti te whārite te whakatau.
40+0.085x^{2}-5x=0
Tangohia te 5x mai i ngā taha e rua.
0.085x^{2}-5x=-40
Tangohia te 40 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{0.085x^{2}-5x}{0.085}=-\frac{40}{0.085}
Whakawehea ngā taha e rua o te whārite ki te 0.085, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x^{2}+\left(-\frac{5}{0.085}\right)x=-\frac{40}{0.085}
Mā te whakawehe ki te 0.085 ka wetekia te whakareanga ki te 0.085.
x^{2}-\frac{1000}{17}x=-\frac{40}{0.085}
Whakawehe -5 ki te 0.085 mā te whakarea -5 ki te tau huripoki o 0.085.
x^{2}-\frac{1000}{17}x=-\frac{8000}{17}
Whakawehe -40 ki te 0.085 mā te whakarea -40 ki te tau huripoki o 0.085.
x^{2}-\frac{1000}{17}x+\left(-\frac{500}{17}\right)^{2}=-\frac{8000}{17}+\left(-\frac{500}{17}\right)^{2}
Whakawehea te -\frac{1000}{17}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{500}{17}. Nā, tāpiria te pūrua o te -\frac{500}{17} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{1000}{17}x+\frac{250000}{289}=-\frac{8000}{17}+\frac{250000}{289}
Pūruatia -\frac{500}{17} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{1000}{17}x+\frac{250000}{289}=\frac{114000}{289}
Tāpiri -\frac{8000}{17} ki te \frac{250000}{289} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{500}{17}\right)^{2}=\frac{114000}{289}
Tauwehea x^{2}-\frac{1000}{17}x+\frac{250000}{289}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{500}{17}\right)^{2}}=\sqrt{\frac{114000}{289}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{500}{17}=\frac{20\sqrt{285}}{17} x-\frac{500}{17}=-\frac{20\sqrt{285}}{17}
Whakarūnātia.
x=\frac{20\sqrt{285}+500}{17} x=\frac{500-20\sqrt{285}}{17}
Me tāpiri \frac{500}{17} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}