Aromātai
\frac{361}{7}\approx 51.571428571
Tauwehe
\frac{19 ^ {2}}{7} = 51\frac{4}{7} = 51.57142857142857
Tohaina
Kua tāruatia ki te papatopenga
40+\frac{405}{350}\times 10
Whakarohaina te \frac{40.5}{35} mā te whakarea i te taurunga me te tauraro ki te 10.
40+\frac{81}{70}\times 10
Whakahekea te hautanga \frac{405}{350} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
40+\frac{81\times 10}{70}
Tuhia te \frac{81}{70}\times 10 hei hautanga kotahi.
40+\frac{810}{70}
Whakareatia te 81 ki te 10, ka 810.
40+\frac{81}{7}
Whakahekea te hautanga \frac{810}{70} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
\frac{280}{7}+\frac{81}{7}
Me tahuri te 40 ki te hautau \frac{280}{7}.
\frac{280+81}{7}
Tā te mea he rite te tauraro o \frac{280}{7} me \frac{81}{7}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{361}{7}
Tāpirihia te 280 ki te 81, ka 361.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}