Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}=\frac{30}{4.9}
Whakawehea ngā taha e rua ki te 4.9.
x^{2}=\frac{300}{49}
Whakarohaina te \frac{30}{4.9} mā te whakarea i te taurunga me te tauraro ki te 10.
x=\frac{10\sqrt{3}}{7} x=-\frac{10\sqrt{3}}{7}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x^{2}=\frac{30}{4.9}
Whakawehea ngā taha e rua ki te 4.9.
x^{2}=\frac{300}{49}
Whakarohaina te \frac{30}{4.9} mā te whakarea i te taurunga me te tauraro ki te 10.
x^{2}-\frac{300}{49}=0
Tangohia te \frac{300}{49} mai i ngā taha e rua.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{300}{49}\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -\frac{300}{49} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-\frac{300}{49}\right)}}{2}
Pūrua 0.
x=\frac{0±\sqrt{\frac{1200}{49}}}{2}
Whakareatia -4 ki te -\frac{300}{49}.
x=\frac{0±\frac{20\sqrt{3}}{7}}{2}
Tuhia te pūtakerua o te \frac{1200}{49}.
x=\frac{10\sqrt{3}}{7}
Nā, me whakaoti te whārite x=\frac{0±\frac{20\sqrt{3}}{7}}{2} ina he tāpiri te ±.
x=-\frac{10\sqrt{3}}{7}
Nā, me whakaoti te whārite x=\frac{0±\frac{20\sqrt{3}}{7}}{2} ina he tango te ±.
x=\frac{10\sqrt{3}}{7} x=-\frac{10\sqrt{3}}{7}
Kua oti te whārite te whakatau.