Tīpoka ki ngā ihirangi matua
Whakaoti mō t
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

t^{2}=\frac{0.196}{4.9}
Whakawehea ngā taha e rua ki te 4.9.
t^{2}=\frac{196}{4900}
Whakarohaina te \frac{0.196}{4.9} mā te whakarea i te taurunga me te tauraro ki te 1000.
t^{2}=\frac{1}{25}
Whakahekea te hautanga \frac{196}{4900} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 196.
t^{2}-\frac{1}{25}=0
Tangohia te \frac{1}{25} mai i ngā taha e rua.
25t^{2}-1=0
Me whakarea ngā taha e rua ki te 25.
\left(5t-1\right)\left(5t+1\right)=0
Whakaarohia te 25t^{2}-1. Tuhia anō te 25t^{2}-1 hei \left(5t\right)^{2}-1^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
t=\frac{1}{5} t=-\frac{1}{5}
Hei kimi otinga whārite, me whakaoti te 5t-1=0 me te 5t+1=0.
t^{2}=\frac{0.196}{4.9}
Whakawehea ngā taha e rua ki te 4.9.
t^{2}=\frac{196}{4900}
Whakarohaina te \frac{0.196}{4.9} mā te whakarea i te taurunga me te tauraro ki te 1000.
t^{2}=\frac{1}{25}
Whakahekea te hautanga \frac{196}{4900} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 196.
t=\frac{1}{5} t=-\frac{1}{5}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
t^{2}=\frac{0.196}{4.9}
Whakawehea ngā taha e rua ki te 4.9.
t^{2}=\frac{196}{4900}
Whakarohaina te \frac{0.196}{4.9} mā te whakarea i te taurunga me te tauraro ki te 1000.
t^{2}=\frac{1}{25}
Whakahekea te hautanga \frac{196}{4900} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 196.
t^{2}-\frac{1}{25}=0
Tangohia te \frac{1}{25} mai i ngā taha e rua.
t=\frac{0±\sqrt{0^{2}-4\left(-\frac{1}{25}\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -\frac{1}{25} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{0±\sqrt{-4\left(-\frac{1}{25}\right)}}{2}
Pūrua 0.
t=\frac{0±\sqrt{\frac{4}{25}}}{2}
Whakareatia -4 ki te -\frac{1}{25}.
t=\frac{0±\frac{2}{5}}{2}
Tuhia te pūtakerua o te \frac{4}{25}.
t=\frac{1}{5}
Nā, me whakaoti te whārite t=\frac{0±\frac{2}{5}}{2} ina he tāpiri te ±.
t=-\frac{1}{5}
Nā, me whakaoti te whārite t=\frac{0±\frac{2}{5}}{2} ina he tango te ±.
t=\frac{1}{5} t=-\frac{1}{5}
Kua oti te whārite te whakatau.