Whakaoti mō x
x = \frac{5 \sqrt{298} - 10}{49} \approx 1.55741597
x=\frac{-5\sqrt{298}-10}{49}\approx -1.965579235
Graph
Tohaina
Kua tāruatia ki te papatopenga
4.9x^{2}+2x-15=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-2±\sqrt{2^{2}-4\times 4.9\left(-15\right)}}{2\times 4.9}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4.9 mō a, 2 mō b, me -15 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times 4.9\left(-15\right)}}{2\times 4.9}
Pūrua 2.
x=\frac{-2±\sqrt{4-19.6\left(-15\right)}}{2\times 4.9}
Whakareatia -4 ki te 4.9.
x=\frac{-2±\sqrt{4+294}}{2\times 4.9}
Whakareatia -19.6 ki te -15.
x=\frac{-2±\sqrt{298}}{2\times 4.9}
Tāpiri 4 ki te 294.
x=\frac{-2±\sqrt{298}}{9.8}
Whakareatia 2 ki te 4.9.
x=\frac{\sqrt{298}-2}{9.8}
Nā, me whakaoti te whārite x=\frac{-2±\sqrt{298}}{9.8} ina he tāpiri te ±. Tāpiri -2 ki te \sqrt{298}.
x=\frac{5\sqrt{298}-10}{49}
Whakawehe -2+\sqrt{298} ki te 9.8 mā te whakarea -2+\sqrt{298} ki te tau huripoki o 9.8.
x=\frac{-\sqrt{298}-2}{9.8}
Nā, me whakaoti te whārite x=\frac{-2±\sqrt{298}}{9.8} ina he tango te ±. Tango \sqrt{298} mai i -2.
x=\frac{-5\sqrt{298}-10}{49}
Whakawehe -2-\sqrt{298} ki te 9.8 mā te whakarea -2-\sqrt{298} ki te tau huripoki o 9.8.
x=\frac{5\sqrt{298}-10}{49} x=\frac{-5\sqrt{298}-10}{49}
Kua oti te whārite te whakatau.
4.9x^{2}+2x-15=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
4.9x^{2}+2x-15-\left(-15\right)=-\left(-15\right)
Me tāpiri 15 ki ngā taha e rua o te whārite.
4.9x^{2}+2x=-\left(-15\right)
Mā te tango i te -15 i a ia ake anō ka toe ko te 0.
4.9x^{2}+2x=15
Tango -15 mai i 0.
\frac{4.9x^{2}+2x}{4.9}=\frac{15}{4.9}
Whakawehea ngā taha e rua o te whārite ki te 4.9, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x^{2}+\frac{2}{4.9}x=\frac{15}{4.9}
Mā te whakawehe ki te 4.9 ka wetekia te whakareanga ki te 4.9.
x^{2}+\frac{20}{49}x=\frac{15}{4.9}
Whakawehe 2 ki te 4.9 mā te whakarea 2 ki te tau huripoki o 4.9.
x^{2}+\frac{20}{49}x=\frac{150}{49}
Whakawehe 15 ki te 4.9 mā te whakarea 15 ki te tau huripoki o 4.9.
x^{2}+\frac{20}{49}x+\frac{10}{49}^{2}=\frac{150}{49}+\frac{10}{49}^{2}
Whakawehea te \frac{20}{49}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{10}{49}. Nā, tāpiria te pūrua o te \frac{10}{49} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{20}{49}x+\frac{100}{2401}=\frac{150}{49}+\frac{100}{2401}
Pūruatia \frac{10}{49} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{20}{49}x+\frac{100}{2401}=\frac{7450}{2401}
Tāpiri \frac{150}{49} ki te \frac{100}{2401} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{10}{49}\right)^{2}=\frac{7450}{2401}
Tauwehea x^{2}+\frac{20}{49}x+\frac{100}{2401}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{10}{49}\right)^{2}}=\sqrt{\frac{7450}{2401}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{10}{49}=\frac{5\sqrt{298}}{49} x+\frac{10}{49}=-\frac{5\sqrt{298}}{49}
Whakarūnātia.
x=\frac{5\sqrt{298}-10}{49} x=\frac{-5\sqrt{298}-10}{49}
Me tango \frac{10}{49} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}