Aromātai
0.92
Tauwehe
\frac{23}{5 ^ {2}} = 0.92
Tohaina
Kua tāruatia ki te papatopenga
4.82-\frac{52}{8}\times 0.6
Whakarohaina te \frac{5.2}{0.8} mā te whakarea i te taurunga me te tauraro ki te 10.
4.82-\frac{13}{2}\times 0.6
Whakahekea te hautanga \frac{52}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
4.82-\frac{13}{2}\times \frac{3}{5}
Me tahuri ki tau ā-ira 0.6 ki te hautau \frac{6}{10}. Whakahekea te hautanga \frac{6}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
4.82-\frac{13\times 3}{2\times 5}
Me whakarea te \frac{13}{2} ki te \frac{3}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
4.82-\frac{39}{10}
Mahia ngā whakarea i roto i te hautanga \frac{13\times 3}{2\times 5}.
\frac{241}{50}-\frac{39}{10}
Me tahuri ki tau ā-ira 4.82 ki te hautau \frac{482}{100}. Whakahekea te hautanga \frac{482}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{241}{50}-\frac{195}{50}
Ko te maha noa iti rawa atu o 50 me 10 ko 50. Me tahuri \frac{241}{50} me \frac{39}{10} ki te hautau me te tautūnga 50.
\frac{241-195}{50}
Tā te mea he rite te tauraro o \frac{241}{50} me \frac{195}{50}, me tango rāua mā te tango i ō raua taurunga.
\frac{46}{50}
Tangohia te 195 i te 241, ka 46.
\frac{23}{25}
Whakahekea te hautanga \frac{46}{50} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}