Aromātai
\frac{37}{9}\approx 4.111111111
Tauwehe
\frac{37}{3 ^ {2}} = 4\frac{1}{9} = 4.111111111111111
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
4.1 \times \frac{ 5 }{ 6 } +(4.1-3 \frac{ 4 }{ 15 } ) \div 1.2
Tohaina
Kua tāruatia ki te papatopenga
\frac{41}{10}\times \frac{5}{6}+\frac{4.1-\frac{3\times 15+4}{15}}{1.2}
Me tahuri ki tau ā-ira 4.1 ki te hautau \frac{41}{10}.
\frac{41\times 5}{10\times 6}+\frac{4.1-\frac{3\times 15+4}{15}}{1.2}
Me whakarea te \frac{41}{10} ki te \frac{5}{6} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{205}{60}+\frac{4.1-\frac{3\times 15+4}{15}}{1.2}
Mahia ngā whakarea i roto i te hautanga \frac{41\times 5}{10\times 6}.
\frac{41}{12}+\frac{4.1-\frac{3\times 15+4}{15}}{1.2}
Whakahekea te hautanga \frac{205}{60} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{41}{12}+\frac{4.1-\frac{45+4}{15}}{1.2}
Whakareatia te 3 ki te 15, ka 45.
\frac{41}{12}+\frac{4.1-\frac{49}{15}}{1.2}
Tāpirihia te 45 ki te 4, ka 49.
\frac{41}{12}+\frac{\frac{41}{10}-\frac{49}{15}}{1.2}
Me tahuri ki tau ā-ira 4.1 ki te hautau \frac{41}{10}.
\frac{41}{12}+\frac{\frac{123}{30}-\frac{98}{30}}{1.2}
Ko te maha noa iti rawa atu o 10 me 15 ko 30. Me tahuri \frac{41}{10} me \frac{49}{15} ki te hautau me te tautūnga 30.
\frac{41}{12}+\frac{\frac{123-98}{30}}{1.2}
Tā te mea he rite te tauraro o \frac{123}{30} me \frac{98}{30}, me tango rāua mā te tango i ō raua taurunga.
\frac{41}{12}+\frac{\frac{25}{30}}{1.2}
Tangohia te 98 i te 123, ka 25.
\frac{41}{12}+\frac{\frac{5}{6}}{1.2}
Whakahekea te hautanga \frac{25}{30} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{41}{12}+\frac{5}{6\times 1.2}
Tuhia te \frac{\frac{5}{6}}{1.2} hei hautanga kotahi.
\frac{41}{12}+\frac{5}{7.2}
Whakareatia te 6 ki te 1.2, ka 7.2.
\frac{41}{12}+\frac{50}{72}
Whakarohaina te \frac{5}{7.2} mā te whakarea i te taurunga me te tauraro ki te 10.
\frac{41}{12}+\frac{25}{36}
Whakahekea te hautanga \frac{50}{72} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{123}{36}+\frac{25}{36}
Ko te maha noa iti rawa atu o 12 me 36 ko 36. Me tahuri \frac{41}{12} me \frac{25}{36} ki te hautau me te tautūnga 36.
\frac{123+25}{36}
Tā te mea he rite te tauraro o \frac{123}{36} me \frac{25}{36}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{148}{36}
Tāpirihia te 123 ki te 25, ka 148.
\frac{37}{9}
Whakahekea te hautanga \frac{148}{36} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}