Whakaoti mō x
x=\frac{1}{3}\approx 0.333333333
x=-\frac{1}{3}\approx -0.333333333
Graph
Pātaitai
Polynomial
4-36 { x }^{ 2 } =0
Tohaina
Kua tāruatia ki te papatopenga
-36x^{2}=-4
Tangohia te 4 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x^{2}=\frac{-4}{-36}
Whakawehea ngā taha e rua ki te -36.
x^{2}=\frac{1}{9}
Whakahekea te hautanga \frac{-4}{-36} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te -4.
x=\frac{1}{3} x=-\frac{1}{3}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
-36x^{2}+4=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-36\right)\times 4}}{2\left(-36\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -36 mō a, 0 mō b, me 4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-36\right)\times 4}}{2\left(-36\right)}
Pūrua 0.
x=\frac{0±\sqrt{144\times 4}}{2\left(-36\right)}
Whakareatia -4 ki te -36.
x=\frac{0±\sqrt{576}}{2\left(-36\right)}
Whakareatia 144 ki te 4.
x=\frac{0±24}{2\left(-36\right)}
Tuhia te pūtakerua o te 576.
x=\frac{0±24}{-72}
Whakareatia 2 ki te -36.
x=-\frac{1}{3}
Nā, me whakaoti te whārite x=\frac{0±24}{-72} ina he tāpiri te ±. Whakahekea te hautanga \frac{24}{-72} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 24.
x=\frac{1}{3}
Nā, me whakaoti te whārite x=\frac{0±24}{-72} ina he tango te ±. Whakahekea te hautanga \frac{-24}{-72} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 24.
x=-\frac{1}{3} x=\frac{1}{3}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}