Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4-2x^{2}-\frac{2}{3}x=4
Pahekotia te -x^{2} me -x^{2}, ka -2x^{2}.
4-2x^{2}-\frac{2}{3}x-4=0
Tangohia te 4 mai i ngā taha e rua.
-2x^{2}-\frac{2}{3}x=0
Tangohia te 4 i te 4, ka 0.
x\left(-2x-\frac{2}{3}\right)=0
Tauwehea te x.
x=0 x=-\frac{1}{3}
Hei kimi otinga whārite, me whakaoti te x=0 me te -2x-\frac{2}{3}=0.
4-2x^{2}-\frac{2}{3}x=4
Pahekotia te -x^{2} me -x^{2}, ka -2x^{2}.
4-2x^{2}-\frac{2}{3}x-4=0
Tangohia te 4 mai i ngā taha e rua.
-2x^{2}-\frac{2}{3}x=0
Tangohia te 4 i te 4, ka 0.
x=\frac{-\left(-\frac{2}{3}\right)±\sqrt{\left(-\frac{2}{3}\right)^{2}}}{2\left(-2\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -2 mō a, -\frac{2}{3} mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{2}{3}\right)±\frac{2}{3}}{2\left(-2\right)}
Tuhia te pūtakerua o te \left(-\frac{2}{3}\right)^{2}.
x=\frac{\frac{2}{3}±\frac{2}{3}}{2\left(-2\right)}
Ko te tauaro o -\frac{2}{3} ko \frac{2}{3}.
x=\frac{\frac{2}{3}±\frac{2}{3}}{-4}
Whakareatia 2 ki te -2.
x=\frac{\frac{4}{3}}{-4}
Nā, me whakaoti te whārite x=\frac{\frac{2}{3}±\frac{2}{3}}{-4} ina he tāpiri te ±. Tāpiri \frac{2}{3} ki te \frac{2}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{1}{3}
Whakawehe \frac{4}{3} ki te -4.
x=\frac{0}{-4}
Nā, me whakaoti te whārite x=\frac{\frac{2}{3}±\frac{2}{3}}{-4} ina he tango te ±. Tango \frac{2}{3} mai i \frac{2}{3} mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=0
Whakawehe 0 ki te -4.
x=-\frac{1}{3} x=0
Kua oti te whārite te whakatau.
4-2x^{2}-\frac{2}{3}x=4
Pahekotia te -x^{2} me -x^{2}, ka -2x^{2}.
-2x^{2}-\frac{2}{3}x=4-4
Tangohia te 4 mai i ngā taha e rua.
-2x^{2}-\frac{2}{3}x=0
Tangohia te 4 i te 4, ka 0.
\frac{-2x^{2}-\frac{2}{3}x}{-2}=\frac{0}{-2}
Whakawehea ngā taha e rua ki te -2.
x^{2}+\left(-\frac{\frac{2}{3}}{-2}\right)x=\frac{0}{-2}
Mā te whakawehe ki te -2 ka wetekia te whakareanga ki te -2.
x^{2}+\frac{1}{3}x=\frac{0}{-2}
Whakawehe -\frac{2}{3} ki te -2.
x^{2}+\frac{1}{3}x=0
Whakawehe 0 ki te -2.
x^{2}+\frac{1}{3}x+\left(\frac{1}{6}\right)^{2}=\left(\frac{1}{6}\right)^{2}
Whakawehea te \frac{1}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{6}. Nā, tāpiria te pūrua o te \frac{1}{6} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{1}{3}x+\frac{1}{36}=\frac{1}{36}
Pūruatia \frac{1}{6} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(x+\frac{1}{6}\right)^{2}=\frac{1}{36}
Tauwehea x^{2}+\frac{1}{3}x+\frac{1}{36}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{6}\right)^{2}}=\sqrt{\frac{1}{36}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{1}{6}=\frac{1}{6} x+\frac{1}{6}=-\frac{1}{6}
Whakarūnātia.
x=0 x=-\frac{1}{3}
Me tango \frac{1}{6} mai i ngā taha e rua o te whārite.