Whakaoti mō x
x=6
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x-4-\left(2-x\right)=6-3\left(x-12\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te x-1.
4x-4-2-\left(-x\right)=6-3\left(x-12\right)
Hei kimi i te tauaro o 2-x, kimihia te tauaro o ia taurangi.
4x-4-2+x=6-3\left(x-12\right)
Ko te tauaro o -x ko x.
4x-6+x=6-3\left(x-12\right)
Tangohia te 2 i te -4, ka -6.
5x-6=6-3\left(x-12\right)
Pahekotia te 4x me x, ka 5x.
5x-6=6-3x+36
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te x-12.
5x-6=42-3x
Tāpirihia te 6 ki te 36, ka 42.
5x-6+3x=42
Me tāpiri te 3x ki ngā taha e rua.
8x-6=42
Pahekotia te 5x me 3x, ka 8x.
8x=42+6
Me tāpiri te 6 ki ngā taha e rua.
8x=48
Tāpirihia te 42 ki te 6, ka 48.
x=\frac{48}{8}
Whakawehea ngā taha e rua ki te 8.
x=6
Whakawehea te 48 ki te 8, kia riro ko 6.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}