Whakaoti mō x
x = \frac{16}{5} = 3\frac{1}{5} = 3.2
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x+12-5\left(2x-6\right)=2\left(4x-3\right)+x
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te x+3.
4x+12-10x+30=2\left(4x-3\right)+x
Whakamahia te āhuatanga tohatoha hei whakarea te -5 ki te 2x-6.
-6x+12+30=2\left(4x-3\right)+x
Pahekotia te 4x me -10x, ka -6x.
-6x+42=2\left(4x-3\right)+x
Tāpirihia te 12 ki te 30, ka 42.
-6x+42=8x-6+x
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 4x-3.
-6x+42=9x-6
Pahekotia te 8x me x, ka 9x.
-6x+42-9x=-6
Tangohia te 9x mai i ngā taha e rua.
-15x+42=-6
Pahekotia te -6x me -9x, ka -15x.
-15x=-6-42
Tangohia te 42 mai i ngā taha e rua.
-15x=-48
Tangohia te 42 i te -6, ka -48.
x=\frac{-48}{-15}
Whakawehea ngā taha e rua ki te -15.
x=\frac{16}{5}
Whakahekea te hautanga \frac{-48}{-15} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te -3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}