Whakaoti mō x
x = -\frac{18}{13} = -1\frac{5}{13} \approx -1.384615385
Graph
Tohaina
Kua tāruatia ki te papatopenga
12-16x-3\left(2-5x\right)=2-4x-2\left(5x+7\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te 3-4x.
12-16x-6+15x=2-4x-2\left(5x+7\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te 2-5x.
6-16x+15x=2-4x-2\left(5x+7\right)
Tangohia te 6 i te 12, ka 6.
6-x=2-4x-2\left(5x+7\right)
Pahekotia te -16x me 15x, ka -x.
6-x=2-4x-10x-14
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te 5x+7.
6-x=2-14x-14
Pahekotia te -4x me -10x, ka -14x.
6-x=-12-14x
Tangohia te 14 i te 2, ka -12.
6-x+14x=-12
Me tāpiri te 14x ki ngā taha e rua.
6+13x=-12
Pahekotia te -x me 14x, ka 13x.
13x=-12-6
Tangohia te 6 mai i ngā taha e rua.
13x=-18
Tangohia te 6 i te -12, ka -18.
x=\frac{-18}{13}
Whakawehea ngā taha e rua ki te 13.
x=-\frac{18}{13}
Ka taea te hautanga \frac{-18}{13} te tuhi anō ko -\frac{18}{13} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}