Aromātai
x
Kimi Pārōnaki e ai ki x
1
Graph
Tohaina
Kua tāruatia ki te papatopenga
4\left(\frac{x}{4}-\frac{5\times 4}{4}\right)+20
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 5 ki te \frac{4}{4}.
4\times \frac{x-5\times 4}{4}+20
Tā te mea he rite te tauraro o \frac{x}{4} me \frac{5\times 4}{4}, me tango rāua mā te tango i ō raua taurunga.
4\times \frac{x-20}{4}+20
Mahia ngā whakarea i roto o x-5\times 4.
x-20+20
Me whakakore te 4 me te 4.
x
Tāpirihia te -20 ki te 20, ka 0.
\frac{\mathrm{d}}{\mathrm{d}x}(4\left(\frac{x}{4}-\frac{5\times 4}{4}\right)+20)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 5 ki te \frac{4}{4}.
\frac{\mathrm{d}}{\mathrm{d}x}(4\times \frac{x-5\times 4}{4}+20)
Tā te mea he rite te tauraro o \frac{x}{4} me \frac{5\times 4}{4}, me tango rāua mā te tango i ō raua taurunga.
\frac{\mathrm{d}}{\mathrm{d}x}(4\times \frac{x-20}{4}+20)
Mahia ngā whakarea i roto o x-5\times 4.
\frac{\mathrm{d}}{\mathrm{d}x}(x-20+20)
Me whakakore te 4 me te 4.
\frac{\mathrm{d}}{\mathrm{d}x}(x)
Tāpirihia te -20 ki te 20, ka 0.
x^{1-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
x^{0}
Tango 1 mai i 1.
1
Mō tētahi kupu t mahue te 0, t^{0}=1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}