Aromātai
66
Tauwehe
2\times 3\times 11
Tohaina
Kua tāruatia ki te papatopenga
4+9+0+21+51+0\times 5+0-2-5-12
Whakareatia te 0 ki te 5, ka 0. Whakareatia te 0 ki te 0, ka 0. Whakareatia te 0 ki te 25, ka 0.
13+0+21+51+0\times 5+0-2-5-12
Tāpirihia te 4 ki te 9, ka 13.
13+21+51+0\times 5+0-2-5-12
Tāpirihia te 13 ki te 0, ka 13.
34+51+0\times 5+0-2-5-12
Tāpirihia te 13 ki te 21, ka 34.
85+0\times 5+0-2-5-12
Tāpirihia te 34 ki te 51, ka 85.
85+0+0-2-5-12
Whakareatia te 0 ki te 5, ka 0.
85+0-2-5-12
Tāpirihia te 85 ki te 0, ka 85.
85-2-5-12
Tāpirihia te 85 ki te 0, ka 85.
83-5-12
Tangohia te 2 i te 85, ka 83.
78-12
Tangohia te 5 i te 83, ka 78.
66
Tangohia te 12 i te 78, ka 66.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}