Whakaoti mō b
b=-\frac{\sqrt{3}\left(x-4\sqrt{3}-7\right)}{3}
Whakaoti mō x
x=\sqrt{3}\left(4-b\right)+7
Graph
Tohaina
Kua tāruatia ki te papatopenga
4+4\sqrt{3}+3=x+b\sqrt{3}
Pahekotia te 2\sqrt{3} me 2\sqrt{3}, ka 4\sqrt{3}.
7+4\sqrt{3}=x+b\sqrt{3}
Tāpirihia te 4 ki te 3, ka 7.
x+b\sqrt{3}=7+4\sqrt{3}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
b\sqrt{3}=7+4\sqrt{3}-x
Tangohia te x mai i ngā taha e rua.
\sqrt{3}b=-x+4\sqrt{3}+7
He hanga arowhānui tō te whārite.
\frac{\sqrt{3}b}{\sqrt{3}}=\frac{-x+4\sqrt{3}+7}{\sqrt{3}}
Whakawehea ngā taha e rua ki te \sqrt{3}.
b=\frac{-x+4\sqrt{3}+7}{\sqrt{3}}
Mā te whakawehe ki te \sqrt{3} ka wetekia te whakareanga ki te \sqrt{3}.
b=\frac{\sqrt{3}\left(-x+4\sqrt{3}+7\right)}{3}
Whakawehe 7+4\sqrt{3}-x ki te \sqrt{3}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}