Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4+x^{2}=3
Tāpirihia te 0 ki te 3, ka 3.
x^{2}=3-4
Tangohia te 4 mai i ngā taha e rua.
x^{2}=-1
Tangohia te 4 i te 3, ka -1.
x=i x=-i
Kua oti te whārite te whakatau.
4+x^{2}=3
Tāpirihia te 0 ki te 3, ka 3.
4+x^{2}-3=0
Tangohia te 3 mai i ngā taha e rua.
1+x^{2}=0
Tangohia te 3 i te 4, ka 1.
x^{2}+1=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me 1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4}}{2}
Pūrua 0.
x=\frac{0±2i}{2}
Tuhia te pūtakerua o te -4.
x=i
Nā, me whakaoti te whārite x=\frac{0±2i}{2} ina he tāpiri te ±.
x=-i
Nā, me whakaoti te whārite x=\frac{0±2i}{2} ina he tango te ±.
x=i x=-i
Kua oti te whārite te whakatau.