Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sqrt{2}x^{2}=2-4
Tangohia te 4 mai i ngā taha e rua.
\sqrt{2}x^{2}=-2
Tangohia te 4 i te 2, ka -2.
x^{2}=-\frac{2}{\sqrt{2}}
Mā te whakawehe ki te \sqrt{2} ka wetekia te whakareanga ki te \sqrt{2}.
x^{2}=-\sqrt{2}
Whakawehe -2 ki te \sqrt{2}.
x=\sqrt[4]{2}i x=-\sqrt[4]{2}i
Tuhia te pūtakerua o ngā taha e rua o te whārite.
4+\sqrt{2}x^{2}-2=0
Tangohia te 2 mai i ngā taha e rua.
2+\sqrt{2}x^{2}=0
Tangohia te 2 i te 4, ka 2.
\sqrt{2}x^{2}+2=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\sqrt{2}\times 2}}{2\sqrt{2}}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi \sqrt{2} mō a, 0 mō b, me 2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\sqrt{2}\times 2}}{2\sqrt{2}}
Pūrua 0.
x=\frac{0±\sqrt{\left(-4\sqrt{2}\right)\times 2}}{2\sqrt{2}}
Whakareatia -4 ki te \sqrt{2}.
x=\frac{0±\sqrt{-8\sqrt{2}}}{2\sqrt{2}}
Whakareatia -4\sqrt{2} ki te 2.
x=\frac{0±2\times 2^{\frac{3}{4}}i}{2\sqrt{2}}
Tuhia te pūtakerua o te -8\sqrt{2}.
x=\frac{2i}{2^{\frac{3}{4}}}
Nā, me whakaoti te whārite x=\frac{0±2\times 2^{\frac{3}{4}}i}{2\sqrt{2}} ina he tāpiri te ±.
x=-\sqrt[4]{2}i
Nā, me whakaoti te whārite x=\frac{0±2\times 2^{\frac{3}{4}}i}{2\sqrt{2}} ina he tango te ±.
x=\frac{2i}{2^{\frac{3}{4}}} x=-\sqrt[4]{2}i
Kua oti te whārite te whakatau.