Whakaoti mō z
z = \frac{5 \sqrt{41} - 15}{2} \approx 8.507810594
z=\frac{-5\sqrt{41}-15}{2}\approx -23.507810594
Tohaina
Kua tāruatia ki te papatopenga
4z^{2}+60z=800
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
4z^{2}+60z-800=800-800
Me tango 800 mai i ngā taha e rua o te whārite.
4z^{2}+60z-800=0
Mā te tango i te 800 i a ia ake anō ka toe ko te 0.
z=\frac{-60±\sqrt{60^{2}-4\times 4\left(-800\right)}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, 60 mō b, me -800 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{-60±\sqrt{3600-4\times 4\left(-800\right)}}{2\times 4}
Pūrua 60.
z=\frac{-60±\sqrt{3600-16\left(-800\right)}}{2\times 4}
Whakareatia -4 ki te 4.
z=\frac{-60±\sqrt{3600+12800}}{2\times 4}
Whakareatia -16 ki te -800.
z=\frac{-60±\sqrt{16400}}{2\times 4}
Tāpiri 3600 ki te 12800.
z=\frac{-60±20\sqrt{41}}{2\times 4}
Tuhia te pūtakerua o te 16400.
z=\frac{-60±20\sqrt{41}}{8}
Whakareatia 2 ki te 4.
z=\frac{20\sqrt{41}-60}{8}
Nā, me whakaoti te whārite z=\frac{-60±20\sqrt{41}}{8} ina he tāpiri te ±. Tāpiri -60 ki te 20\sqrt{41}.
z=\frac{5\sqrt{41}-15}{2}
Whakawehe -60+20\sqrt{41} ki te 8.
z=\frac{-20\sqrt{41}-60}{8}
Nā, me whakaoti te whārite z=\frac{-60±20\sqrt{41}}{8} ina he tango te ±. Tango 20\sqrt{41} mai i -60.
z=\frac{-5\sqrt{41}-15}{2}
Whakawehe -60-20\sqrt{41} ki te 8.
z=\frac{5\sqrt{41}-15}{2} z=\frac{-5\sqrt{41}-15}{2}
Kua oti te whārite te whakatau.
4z^{2}+60z=800
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{4z^{2}+60z}{4}=\frac{800}{4}
Whakawehea ngā taha e rua ki te 4.
z^{2}+\frac{60}{4}z=\frac{800}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
z^{2}+15z=\frac{800}{4}
Whakawehe 60 ki te 4.
z^{2}+15z=200
Whakawehe 800 ki te 4.
z^{2}+15z+\left(\frac{15}{2}\right)^{2}=200+\left(\frac{15}{2}\right)^{2}
Whakawehea te 15, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{15}{2}. Nā, tāpiria te pūrua o te \frac{15}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
z^{2}+15z+\frac{225}{4}=200+\frac{225}{4}
Pūruatia \frac{15}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
z^{2}+15z+\frac{225}{4}=\frac{1025}{4}
Tāpiri 200 ki te \frac{225}{4}.
\left(z+\frac{15}{2}\right)^{2}=\frac{1025}{4}
Tauwehea z^{2}+15z+\frac{225}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(z+\frac{15}{2}\right)^{2}}=\sqrt{\frac{1025}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
z+\frac{15}{2}=\frac{5\sqrt{41}}{2} z+\frac{15}{2}=-\frac{5\sqrt{41}}{2}
Whakarūnātia.
z=\frac{5\sqrt{41}-15}{2} z=\frac{-5\sqrt{41}-15}{2}
Me tango \frac{15}{2} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}