Whakaoti mō y (complex solution)
y = \frac{3}{2} = 1\frac{1}{2} = 1.5
y = -\frac{3}{2} = -1\frac{1}{2} = -1.5
y=-2i
y=2i
Whakaoti mō y
y = -\frac{3}{2} = -1\frac{1}{2} = -1.5
y = \frac{3}{2} = 1\frac{1}{2} = 1.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
4t^{2}+7t-36=0
Whakakapia te t mō te y^{2}.
t=\frac{-7±\sqrt{7^{2}-4\times 4\left(-36\right)}}{2\times 4}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 4 mō te a, te 7 mō te b, me te -36 mō te c i te ture pūrua.
t=\frac{-7±25}{8}
Mahia ngā tātaitai.
t=\frac{9}{4} t=-4
Whakaotia te whārite t=\frac{-7±25}{8} ina he tōrunga te ±, ina he tōraro te ±.
y=-\frac{3}{2} y=\frac{3}{2} y=-2i y=2i
I te mea ko y=t^{2}, ka riro ngā otinga mā te arotake i te y=±\sqrt{t} mō ia t.
4t^{2}+7t-36=0
Whakakapia te t mō te y^{2}.
t=\frac{-7±\sqrt{7^{2}-4\times 4\left(-36\right)}}{2\times 4}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 4 mō te a, te 7 mō te b, me te -36 mō te c i te ture pūrua.
t=\frac{-7±25}{8}
Mahia ngā tātaitai.
t=\frac{9}{4} t=-4
Whakaotia te whārite t=\frac{-7±25}{8} ina he tōrunga te ±, ina he tōraro te ±.
y=\frac{3}{2} y=-\frac{3}{2}
I te mea ko y=t^{2}, ka riro ngā otinga mā te arotake i te y=±\sqrt{t} mō t tōrunga.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}