Tīpoka ki ngā ihirangi matua
Whakaoti mō y (complex solution)
Tick mark Image
Whakaoti mō y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4t^{2}+7t-36=0
Whakakapia te t mō te y^{2}.
t=\frac{-7±\sqrt{7^{2}-4\times 4\left(-36\right)}}{2\times 4}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 4 mō te a, te 7 mō te b, me te -36 mō te c i te ture pūrua.
t=\frac{-7±25}{8}
Mahia ngā tātaitai.
t=\frac{9}{4} t=-4
Whakaotia te whārite t=\frac{-7±25}{8} ina he tōrunga te ±, ina he tōraro te ±.
y=-\frac{3}{2} y=\frac{3}{2} y=-2i y=2i
I te mea ko y=t^{2}, ka riro ngā otinga mā te arotake i te y=±\sqrt{t} mō ia t.
4t^{2}+7t-36=0
Whakakapia te t mō te y^{2}.
t=\frac{-7±\sqrt{7^{2}-4\times 4\left(-36\right)}}{2\times 4}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 4 mō te a, te 7 mō te b, me te -36 mō te c i te ture pūrua.
t=\frac{-7±25}{8}
Mahia ngā tātaitai.
t=\frac{9}{4} t=-4
Whakaotia te whārite t=\frac{-7±25}{8} ina he tōrunga te ±, ina he tōraro te ±.
y=\frac{3}{2} y=-\frac{3}{2}
I te mea ko y=t^{2}, ka riro ngā otinga mā te arotake i te y=±\sqrt{t} mō t tōrunga.