Whakaoti mō y
y=\frac{1}{4}=0.25
y=2
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=-9 ab=4\times 2=8
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 4y^{2}+ay+by+2. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-8 -2,-4
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 8.
-1-8=-9 -2-4=-6
Tātaihia te tapeke mō ia takirua.
a=-8 b=-1
Ko te otinga te takirua ka hoatu i te tapeke -9.
\left(4y^{2}-8y\right)+\left(-y+2\right)
Tuhia anō te 4y^{2}-9y+2 hei \left(4y^{2}-8y\right)+\left(-y+2\right).
4y\left(y-2\right)-\left(y-2\right)
Tauwehea te 4y i te tuatahi me te -1 i te rōpū tuarua.
\left(y-2\right)\left(4y-1\right)
Whakatauwehea atu te kīanga pātahi y-2 mā te whakamahi i te āhuatanga tātai tohatoha.
y=2 y=\frac{1}{4}
Hei kimi otinga whārite, me whakaoti te y-2=0 me te 4y-1=0.
4y^{2}-9y+2=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
y=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 4\times 2}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, -9 mō b, me 2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-9\right)±\sqrt{81-4\times 4\times 2}}{2\times 4}
Pūrua -9.
y=\frac{-\left(-9\right)±\sqrt{81-16\times 2}}{2\times 4}
Whakareatia -4 ki te 4.
y=\frac{-\left(-9\right)±\sqrt{81-32}}{2\times 4}
Whakareatia -16 ki te 2.
y=\frac{-\left(-9\right)±\sqrt{49}}{2\times 4}
Tāpiri 81 ki te -32.
y=\frac{-\left(-9\right)±7}{2\times 4}
Tuhia te pūtakerua o te 49.
y=\frac{9±7}{2\times 4}
Ko te tauaro o -9 ko 9.
y=\frac{9±7}{8}
Whakareatia 2 ki te 4.
y=\frac{16}{8}
Nā, me whakaoti te whārite y=\frac{9±7}{8} ina he tāpiri te ±. Tāpiri 9 ki te 7.
y=2
Whakawehe 16 ki te 8.
y=\frac{2}{8}
Nā, me whakaoti te whārite y=\frac{9±7}{8} ina he tango te ±. Tango 7 mai i 9.
y=\frac{1}{4}
Whakahekea te hautanga \frac{2}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
y=2 y=\frac{1}{4}
Kua oti te whārite te whakatau.
4y^{2}-9y+2=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
4y^{2}-9y+2-2=-2
Me tango 2 mai i ngā taha e rua o te whārite.
4y^{2}-9y=-2
Mā te tango i te 2 i a ia ake anō ka toe ko te 0.
\frac{4y^{2}-9y}{4}=-\frac{2}{4}
Whakawehea ngā taha e rua ki te 4.
y^{2}-\frac{9}{4}y=-\frac{2}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
y^{2}-\frac{9}{4}y=-\frac{1}{2}
Whakahekea te hautanga \frac{-2}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
y^{2}-\frac{9}{4}y+\left(-\frac{9}{8}\right)^{2}=-\frac{1}{2}+\left(-\frac{9}{8}\right)^{2}
Whakawehea te -\frac{9}{4}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{9}{8}. Nā, tāpiria te pūrua o te -\frac{9}{8} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
y^{2}-\frac{9}{4}y+\frac{81}{64}=-\frac{1}{2}+\frac{81}{64}
Pūruatia -\frac{9}{8} mā te pūrua i te taurunga me te tauraro o te hautanga.
y^{2}-\frac{9}{4}y+\frac{81}{64}=\frac{49}{64}
Tāpiri -\frac{1}{2} ki te \frac{81}{64} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(y-\frac{9}{8}\right)^{2}=\frac{49}{64}
Tauwehea y^{2}-\frac{9}{4}y+\frac{81}{64}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{9}{8}\right)^{2}}=\sqrt{\frac{49}{64}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
y-\frac{9}{8}=\frac{7}{8} y-\frac{9}{8}=-\frac{7}{8}
Whakarūnātia.
y=2 y=\frac{1}{4}
Me tāpiri \frac{9}{8} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}