Whakaoti mō y
y=2\sqrt{19}+7\approx 15.717797887
y=7-2\sqrt{19}\approx -1.717797887
Graph
Tohaina
Kua tāruatia ki te papatopenga
4y^{2}-56y=108
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
4y^{2}-56y-108=108-108
Me tango 108 mai i ngā taha e rua o te whārite.
4y^{2}-56y-108=0
Mā te tango i te 108 i a ia ake anō ka toe ko te 0.
y=\frac{-\left(-56\right)±\sqrt{\left(-56\right)^{2}-4\times 4\left(-108\right)}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, -56 mō b, me -108 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-56\right)±\sqrt{3136-4\times 4\left(-108\right)}}{2\times 4}
Pūrua -56.
y=\frac{-\left(-56\right)±\sqrt{3136-16\left(-108\right)}}{2\times 4}
Whakareatia -4 ki te 4.
y=\frac{-\left(-56\right)±\sqrt{3136+1728}}{2\times 4}
Whakareatia -16 ki te -108.
y=\frac{-\left(-56\right)±\sqrt{4864}}{2\times 4}
Tāpiri 3136 ki te 1728.
y=\frac{-\left(-56\right)±16\sqrt{19}}{2\times 4}
Tuhia te pūtakerua o te 4864.
y=\frac{56±16\sqrt{19}}{2\times 4}
Ko te tauaro o -56 ko 56.
y=\frac{56±16\sqrt{19}}{8}
Whakareatia 2 ki te 4.
y=\frac{16\sqrt{19}+56}{8}
Nā, me whakaoti te whārite y=\frac{56±16\sqrt{19}}{8} ina he tāpiri te ±. Tāpiri 56 ki te 16\sqrt{19}.
y=2\sqrt{19}+7
Whakawehe 56+16\sqrt{19} ki te 8.
y=\frac{56-16\sqrt{19}}{8}
Nā, me whakaoti te whārite y=\frac{56±16\sqrt{19}}{8} ina he tango te ±. Tango 16\sqrt{19} mai i 56.
y=7-2\sqrt{19}
Whakawehe 56-16\sqrt{19} ki te 8.
y=2\sqrt{19}+7 y=7-2\sqrt{19}
Kua oti te whārite te whakatau.
4y^{2}-56y=108
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{4y^{2}-56y}{4}=\frac{108}{4}
Whakawehea ngā taha e rua ki te 4.
y^{2}+\left(-\frac{56}{4}\right)y=\frac{108}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
y^{2}-14y=\frac{108}{4}
Whakawehe -56 ki te 4.
y^{2}-14y=27
Whakawehe 108 ki te 4.
y^{2}-14y+\left(-7\right)^{2}=27+\left(-7\right)^{2}
Whakawehea te -14, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -7. Nā, tāpiria te pūrua o te -7 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
y^{2}-14y+49=27+49
Pūrua -7.
y^{2}-14y+49=76
Tāpiri 27 ki te 49.
\left(y-7\right)^{2}=76
Tauwehea y^{2}-14y+49. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-7\right)^{2}}=\sqrt{76}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
y-7=2\sqrt{19} y-7=-2\sqrt{19}
Whakarūnātia.
y=2\sqrt{19}+7 y=7-2\sqrt{19}
Me tāpiri 7 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}