Tauwehe
\left(2y-9\right)\left(2y-3\right)
Aromātai
\left(2y-9\right)\left(2y-3\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=-24 ab=4\times 27=108
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 4y^{2}+ay+by+27. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-108 -2,-54 -3,-36 -4,-27 -6,-18 -9,-12
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 108.
-1-108=-109 -2-54=-56 -3-36=-39 -4-27=-31 -6-18=-24 -9-12=-21
Tātaihia te tapeke mō ia takirua.
a=-18 b=-6
Ko te otinga te takirua ka hoatu i te tapeke -24.
\left(4y^{2}-18y\right)+\left(-6y+27\right)
Tuhia anō te 4y^{2}-24y+27 hei \left(4y^{2}-18y\right)+\left(-6y+27\right).
2y\left(2y-9\right)-3\left(2y-9\right)
Tauwehea te 2y i te tuatahi me te -3 i te rōpū tuarua.
\left(2y-9\right)\left(2y-3\right)
Whakatauwehea atu te kīanga pātahi 2y-9 mā te whakamahi i te āhuatanga tātai tohatoha.
4y^{2}-24y+27=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
y=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\times 4\times 27}}{2\times 4}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
y=\frac{-\left(-24\right)±\sqrt{576-4\times 4\times 27}}{2\times 4}
Pūrua -24.
y=\frac{-\left(-24\right)±\sqrt{576-16\times 27}}{2\times 4}
Whakareatia -4 ki te 4.
y=\frac{-\left(-24\right)±\sqrt{576-432}}{2\times 4}
Whakareatia -16 ki te 27.
y=\frac{-\left(-24\right)±\sqrt{144}}{2\times 4}
Tāpiri 576 ki te -432.
y=\frac{-\left(-24\right)±12}{2\times 4}
Tuhia te pūtakerua o te 144.
y=\frac{24±12}{2\times 4}
Ko te tauaro o -24 ko 24.
y=\frac{24±12}{8}
Whakareatia 2 ki te 4.
y=\frac{36}{8}
Nā, me whakaoti te whārite y=\frac{24±12}{8} ina he tāpiri te ±. Tāpiri 24 ki te 12.
y=\frac{9}{2}
Whakahekea te hautanga \frac{36}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
y=\frac{12}{8}
Nā, me whakaoti te whārite y=\frac{24±12}{8} ina he tango te ±. Tango 12 mai i 24.
y=\frac{3}{2}
Whakahekea te hautanga \frac{12}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
4y^{2}-24y+27=4\left(y-\frac{9}{2}\right)\left(y-\frac{3}{2}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{9}{2} mō te x_{1} me te \frac{3}{2} mō te x_{2}.
4y^{2}-24y+27=4\times \frac{2y-9}{2}\left(y-\frac{3}{2}\right)
Tango \frac{9}{2} mai i y mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
4y^{2}-24y+27=4\times \frac{2y-9}{2}\times \frac{2y-3}{2}
Tango \frac{3}{2} mai i y mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
4y^{2}-24y+27=4\times \frac{\left(2y-9\right)\left(2y-3\right)}{2\times 2}
Whakareatia \frac{2y-9}{2} ki te \frac{2y-3}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
4y^{2}-24y+27=4\times \frac{\left(2y-9\right)\left(2y-3\right)}{4}
Whakareatia 2 ki te 2.
4y^{2}-24y+27=\left(2y-9\right)\left(2y-3\right)
Whakakorea atu te tauwehe pūnoa nui rawa 4 i roto i te 4 me te 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}