Whakaoti mō y
y=\frac{13+\sqrt{407}i}{8}\approx 1.625+2.521780125i
y=\frac{-\sqrt{407}i+13}{8}\approx 1.625-2.521780125i
Tohaina
Kua tāruatia ki te papatopenga
4y^{2}-13y+36=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
y=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 4\times 36}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, -13 mō b, me 36 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-13\right)±\sqrt{169-4\times 4\times 36}}{2\times 4}
Pūrua -13.
y=\frac{-\left(-13\right)±\sqrt{169-16\times 36}}{2\times 4}
Whakareatia -4 ki te 4.
y=\frac{-\left(-13\right)±\sqrt{169-576}}{2\times 4}
Whakareatia -16 ki te 36.
y=\frac{-\left(-13\right)±\sqrt{-407}}{2\times 4}
Tāpiri 169 ki te -576.
y=\frac{-\left(-13\right)±\sqrt{407}i}{2\times 4}
Tuhia te pūtakerua o te -407.
y=\frac{13±\sqrt{407}i}{2\times 4}
Ko te tauaro o -13 ko 13.
y=\frac{13±\sqrt{407}i}{8}
Whakareatia 2 ki te 4.
y=\frac{13+\sqrt{407}i}{8}
Nā, me whakaoti te whārite y=\frac{13±\sqrt{407}i}{8} ina he tāpiri te ±. Tāpiri 13 ki te i\sqrt{407}.
y=\frac{-\sqrt{407}i+13}{8}
Nā, me whakaoti te whārite y=\frac{13±\sqrt{407}i}{8} ina he tango te ±. Tango i\sqrt{407} mai i 13.
y=\frac{13+\sqrt{407}i}{8} y=\frac{-\sqrt{407}i+13}{8}
Kua oti te whārite te whakatau.
4y^{2}-13y+36=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
4y^{2}-13y+36-36=-36
Me tango 36 mai i ngā taha e rua o te whārite.
4y^{2}-13y=-36
Mā te tango i te 36 i a ia ake anō ka toe ko te 0.
\frac{4y^{2}-13y}{4}=-\frac{36}{4}
Whakawehea ngā taha e rua ki te 4.
y^{2}-\frac{13}{4}y=-\frac{36}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
y^{2}-\frac{13}{4}y=-9
Whakawehe -36 ki te 4.
y^{2}-\frac{13}{4}y+\left(-\frac{13}{8}\right)^{2}=-9+\left(-\frac{13}{8}\right)^{2}
Whakawehea te -\frac{13}{4}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{13}{8}. Nā, tāpiria te pūrua o te -\frac{13}{8} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
y^{2}-\frac{13}{4}y+\frac{169}{64}=-9+\frac{169}{64}
Pūruatia -\frac{13}{8} mā te pūrua i te taurunga me te tauraro o te hautanga.
y^{2}-\frac{13}{4}y+\frac{169}{64}=-\frac{407}{64}
Tāpiri -9 ki te \frac{169}{64}.
\left(y-\frac{13}{8}\right)^{2}=-\frac{407}{64}
Tauwehea y^{2}-\frac{13}{4}y+\frac{169}{64}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{13}{8}\right)^{2}}=\sqrt{-\frac{407}{64}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
y-\frac{13}{8}=\frac{\sqrt{407}i}{8} y-\frac{13}{8}=-\frac{\sqrt{407}i}{8}
Whakarūnātia.
y=\frac{13+\sqrt{407}i}{8} y=\frac{-\sqrt{407}i+13}{8}
Me tāpiri \frac{13}{8} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}