Tīpoka ki ngā ihirangi matua
Whakaoti mō y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4y^{2}+24y-374=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
y=\frac{-24±\sqrt{24^{2}-4\times 4\left(-374\right)}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, 24 mō b, me -374 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-24±\sqrt{576-4\times 4\left(-374\right)}}{2\times 4}
Pūrua 24.
y=\frac{-24±\sqrt{576-16\left(-374\right)}}{2\times 4}
Whakareatia -4 ki te 4.
y=\frac{-24±\sqrt{576+5984}}{2\times 4}
Whakareatia -16 ki te -374.
y=\frac{-24±\sqrt{6560}}{2\times 4}
Tāpiri 576 ki te 5984.
y=\frac{-24±4\sqrt{410}}{2\times 4}
Tuhia te pūtakerua o te 6560.
y=\frac{-24±4\sqrt{410}}{8}
Whakareatia 2 ki te 4.
y=\frac{4\sqrt{410}-24}{8}
Nā, me whakaoti te whārite y=\frac{-24±4\sqrt{410}}{8} ina he tāpiri te ±. Tāpiri -24 ki te 4\sqrt{410}.
y=\frac{\sqrt{410}}{2}-3
Whakawehe -24+4\sqrt{410} ki te 8.
y=\frac{-4\sqrt{410}-24}{8}
Nā, me whakaoti te whārite y=\frac{-24±4\sqrt{410}}{8} ina he tango te ±. Tango 4\sqrt{410} mai i -24.
y=-\frac{\sqrt{410}}{2}-3
Whakawehe -24-4\sqrt{410} ki te 8.
y=\frac{\sqrt{410}}{2}-3 y=-\frac{\sqrt{410}}{2}-3
Kua oti te whārite te whakatau.
4y^{2}+24y-374=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
4y^{2}+24y-374-\left(-374\right)=-\left(-374\right)
Me tāpiri 374 ki ngā taha e rua o te whārite.
4y^{2}+24y=-\left(-374\right)
Mā te tango i te -374 i a ia ake anō ka toe ko te 0.
4y^{2}+24y=374
Tango -374 mai i 0.
\frac{4y^{2}+24y}{4}=\frac{374}{4}
Whakawehea ngā taha e rua ki te 4.
y^{2}+\frac{24}{4}y=\frac{374}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
y^{2}+6y=\frac{374}{4}
Whakawehe 24 ki te 4.
y^{2}+6y=\frac{187}{2}
Whakahekea te hautanga \frac{374}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
y^{2}+6y+3^{2}=\frac{187}{2}+3^{2}
Whakawehea te 6, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 3. Nā, tāpiria te pūrua o te 3 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
y^{2}+6y+9=\frac{187}{2}+9
Pūrua 3.
y^{2}+6y+9=\frac{205}{2}
Tāpiri \frac{187}{2} ki te 9.
\left(y+3\right)^{2}=\frac{205}{2}
Tauwehea y^{2}+6y+9. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+3\right)^{2}}=\sqrt{\frac{205}{2}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
y+3=\frac{\sqrt{410}}{2} y+3=-\frac{\sqrt{410}}{2}
Whakarūnātia.
y=\frac{\sqrt{410}}{2}-3 y=-\frac{\sqrt{410}}{2}-3
Me tango 3 mai i ngā taha e rua o te whārite.