Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4x-y=5,-4x+5y=7
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4x-y=5
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
4x=y+5
Me tāpiri y ki ngā taha e rua o te whārite.
x=\frac{1}{4}\left(y+5\right)
Whakawehea ngā taha e rua ki te 4.
x=\frac{1}{4}y+\frac{5}{4}
Whakareatia \frac{1}{4} ki te y+5.
-4\left(\frac{1}{4}y+\frac{5}{4}\right)+5y=7
Whakakapia te \frac{5+y}{4} mō te x ki tērā atu whārite, -4x+5y=7.
-y-5+5y=7
Whakareatia -4 ki te \frac{5+y}{4}.
4y-5=7
Tāpiri -y ki te 5y.
4y=12
Me tāpiri 5 ki ngā taha e rua o te whārite.
y=3
Whakawehea ngā taha e rua ki te 4.
x=\frac{1}{4}\times 3+\frac{5}{4}
Whakaurua te 3 mō y ki x=\frac{1}{4}y+\frac{5}{4}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{3+5}{4}
Whakareatia \frac{1}{4} ki te 3.
x=2
Tāpiri \frac{5}{4} ki te \frac{3}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=2,y=3
Kua oti te pūnaha te whakatau.
4x-y=5,-4x+5y=7
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&-1\\-4&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\7\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&-1\\-4&5\end{matrix}\right))\left(\begin{matrix}4&-1\\-4&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-1\\-4&5\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&-1\\-4&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-1\\-4&5\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-1\\-4&5\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{4\times 5-\left(-\left(-4\right)\right)}&-\frac{-1}{4\times 5-\left(-\left(-4\right)\right)}\\-\frac{-4}{4\times 5-\left(-\left(-4\right)\right)}&\frac{4}{4\times 5-\left(-\left(-4\right)\right)}\end{matrix}\right)\left(\begin{matrix}5\\7\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{16}&\frac{1}{16}\\\frac{1}{4}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}5\\7\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{16}\times 5+\frac{1}{16}\times 7\\\frac{1}{4}\times 5+\frac{1}{4}\times 7\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\3\end{matrix}\right)
Mahia ngā tātaitanga.
x=2,y=3
Tangohia ngā huānga poukapa x me y.
4x-y=5,-4x+5y=7
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-4\times 4x-4\left(-1\right)y=-4\times 5,4\left(-4\right)x+4\times 5y=4\times 7
Kia ōrite ai a 4x me -4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 4.
-16x+4y=-20,-16x+20y=28
Whakarūnātia.
-16x+16x+4y-20y=-20-28
Me tango -16x+20y=28 mai i -16x+4y=-20 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
4y-20y=-20-28
Tāpiri -16x ki te 16x. Ka whakakore atu ngā kupu -16x me 16x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-16y=-20-28
Tāpiri 4y ki te -20y.
-16y=-48
Tāpiri -20 ki te -28.
y=3
Whakawehea ngā taha e rua ki te -16.
-4x+5\times 3=7
Whakaurua te 3 mō y ki -4x+5y=7. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-4x+15=7
Whakareatia 5 ki te 3.
-4x=-8
Me tango 15 mai i ngā taha e rua o te whārite.
x=2
Whakawehea ngā taha e rua ki te -4.
x=2,y=3
Kua oti te pūnaha te whakatau.