Whakaoti mō x, y
x=5
y = \frac{18}{5} = 3\frac{3}{5} = 3.6
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x-5y=2,x+10y=41
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4x-5y=2
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
4x=5y+2
Me tāpiri 5y ki ngā taha e rua o te whārite.
x=\frac{1}{4}\left(5y+2\right)
Whakawehea ngā taha e rua ki te 4.
x=\frac{5}{4}y+\frac{1}{2}
Whakareatia \frac{1}{4} ki te 5y+2.
\frac{5}{4}y+\frac{1}{2}+10y=41
Whakakapia te \frac{5y}{4}+\frac{1}{2} mō te x ki tērā atu whārite, x+10y=41.
\frac{45}{4}y+\frac{1}{2}=41
Tāpiri \frac{5y}{4} ki te 10y.
\frac{45}{4}y=\frac{81}{2}
Me tango \frac{1}{2} mai i ngā taha e rua o te whārite.
y=\frac{18}{5}
Whakawehea ngā taha e rua o te whārite ki te \frac{45}{4}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{5}{4}\times \frac{18}{5}+\frac{1}{2}
Whakaurua te \frac{18}{5} mō y ki x=\frac{5}{4}y+\frac{1}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{9+1}{2}
Whakareatia \frac{5}{4} ki te \frac{18}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=5
Tāpiri \frac{1}{2} ki te \frac{9}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=5,y=\frac{18}{5}
Kua oti te pūnaha te whakatau.
4x-5y=2,x+10y=41
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&-5\\1&10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\41\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&-5\\1&10\end{matrix}\right))\left(\begin{matrix}4&-5\\1&10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-5\\1&10\end{matrix}\right))\left(\begin{matrix}2\\41\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&-5\\1&10\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-5\\1&10\end{matrix}\right))\left(\begin{matrix}2\\41\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-5\\1&10\end{matrix}\right))\left(\begin{matrix}2\\41\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{10}{4\times 10-\left(-5\right)}&-\frac{-5}{4\times 10-\left(-5\right)}\\-\frac{1}{4\times 10-\left(-5\right)}&\frac{4}{4\times 10-\left(-5\right)}\end{matrix}\right)\left(\begin{matrix}2\\41\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{9}&\frac{1}{9}\\-\frac{1}{45}&\frac{4}{45}\end{matrix}\right)\left(\begin{matrix}2\\41\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{9}\times 2+\frac{1}{9}\times 41\\-\frac{1}{45}\times 2+\frac{4}{45}\times 41\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\\frac{18}{5}\end{matrix}\right)
Mahia ngā tātaitanga.
x=5,y=\frac{18}{5}
Tangohia ngā huānga poukapa x me y.
4x-5y=2,x+10y=41
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4x-5y=2,4x+4\times 10y=4\times 41
Kia ōrite ai a 4x me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 4.
4x-5y=2,4x+40y=164
Whakarūnātia.
4x-4x-5y-40y=2-164
Me tango 4x+40y=164 mai i 4x-5y=2 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-5y-40y=2-164
Tāpiri 4x ki te -4x. Ka whakakore atu ngā kupu 4x me -4x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-45y=2-164
Tāpiri -5y ki te -40y.
-45y=-162
Tāpiri 2 ki te -164.
y=\frac{18}{5}
Whakawehea ngā taha e rua ki te -45.
x+10\times \frac{18}{5}=41
Whakaurua te \frac{18}{5} mō y ki x+10y=41. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x+36=41
Whakareatia 10 ki te \frac{18}{5}.
x=5
Me tango 36 mai i ngā taha e rua o te whārite.
x=5,y=\frac{18}{5}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}