Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4x-3y=2,x+5y=-11
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4x-3y=2
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
4x=3y+2
Me tāpiri 3y ki ngā taha e rua o te whārite.
x=\frac{1}{4}\left(3y+2\right)
Whakawehea ngā taha e rua ki te 4.
x=\frac{3}{4}y+\frac{1}{2}
Whakareatia \frac{1}{4} ki te 3y+2.
\frac{3}{4}y+\frac{1}{2}+5y=-11
Whakakapia te \frac{3y}{4}+\frac{1}{2} mō te x ki tērā atu whārite, x+5y=-11.
\frac{23}{4}y+\frac{1}{2}=-11
Tāpiri \frac{3y}{4} ki te 5y.
\frac{23}{4}y=-\frac{23}{2}
Me tango \frac{1}{2} mai i ngā taha e rua o te whārite.
y=-2
Whakawehea ngā taha e rua o te whārite ki te \frac{23}{4}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{3}{4}\left(-2\right)+\frac{1}{2}
Whakaurua te -2 mō y ki x=\frac{3}{4}y+\frac{1}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-3+1}{2}
Whakareatia \frac{3}{4} ki te -2.
x=-1
Tāpiri \frac{1}{2} ki te -\frac{3}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-1,y=-2
Kua oti te pūnaha te whakatau.
4x-3y=2,x+5y=-11
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&-3\\1&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-11\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&-3\\1&5\end{matrix}\right))\left(\begin{matrix}4&-3\\1&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\1&5\end{matrix}\right))\left(\begin{matrix}2\\-11\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&-3\\1&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\1&5\end{matrix}\right))\left(\begin{matrix}2\\-11\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\1&5\end{matrix}\right))\left(\begin{matrix}2\\-11\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{4\times 5-\left(-3\right)}&-\frac{-3}{4\times 5-\left(-3\right)}\\-\frac{1}{4\times 5-\left(-3\right)}&\frac{4}{4\times 5-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}2\\-11\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{23}&\frac{3}{23}\\-\frac{1}{23}&\frac{4}{23}\end{matrix}\right)\left(\begin{matrix}2\\-11\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{23}\times 2+\frac{3}{23}\left(-11\right)\\-\frac{1}{23}\times 2+\frac{4}{23}\left(-11\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\-2\end{matrix}\right)
Mahia ngā tātaitanga.
x=-1,y=-2
Tangohia ngā huānga poukapa x me y.
4x-3y=2,x+5y=-11
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4x-3y=2,4x+4\times 5y=4\left(-11\right)
Kia ōrite ai a 4x me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 4.
4x-3y=2,4x+20y=-44
Whakarūnātia.
4x-4x-3y-20y=2+44
Me tango 4x+20y=-44 mai i 4x-3y=2 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-3y-20y=2+44
Tāpiri 4x ki te -4x. Ka whakakore atu ngā kupu 4x me -4x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-23y=2+44
Tāpiri -3y ki te -20y.
-23y=46
Tāpiri 2 ki te 44.
y=-2
Whakawehea ngā taha e rua ki te -23.
x+5\left(-2\right)=-11
Whakaurua te -2 mō y ki x+5y=-11. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x-10=-11
Whakareatia 5 ki te -2.
x=-1
Me tāpiri 10 ki ngā taha e rua o te whārite.
x=-1,y=-2
Kua oti te pūnaha te whakatau.