Whakaoti mō x
x=-\frac{1}{2}=-0.5
x=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
8x^{2}+4x=0
Whakamahia te āhuatanga tohatoha hei whakarea te 4x ki te 2x+1.
x\left(8x+4\right)=0
Tauwehea te x.
x=0 x=-\frac{1}{2}
Hei kimi otinga whārite, me whakaoti te x=0 me te 8x+4=0.
8x^{2}+4x=0
Whakamahia te āhuatanga tohatoha hei whakarea te 4x ki te 2x+1.
x=\frac{-4±\sqrt{4^{2}}}{2\times 8}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 8 mō a, 4 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±4}{2\times 8}
Tuhia te pūtakerua o te 4^{2}.
x=\frac{-4±4}{16}
Whakareatia 2 ki te 8.
x=\frac{0}{16}
Nā, me whakaoti te whārite x=\frac{-4±4}{16} ina he tāpiri te ±. Tāpiri -4 ki te 4.
x=0
Whakawehe 0 ki te 16.
x=-\frac{8}{16}
Nā, me whakaoti te whārite x=\frac{-4±4}{16} ina he tango te ±. Tango 4 mai i -4.
x=-\frac{1}{2}
Whakahekea te hautanga \frac{-8}{16} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
x=0 x=-\frac{1}{2}
Kua oti te whārite te whakatau.
8x^{2}+4x=0
Whakamahia te āhuatanga tohatoha hei whakarea te 4x ki te 2x+1.
\frac{8x^{2}+4x}{8}=\frac{0}{8}
Whakawehea ngā taha e rua ki te 8.
x^{2}+\frac{4}{8}x=\frac{0}{8}
Mā te whakawehe ki te 8 ka wetekia te whakareanga ki te 8.
x^{2}+\frac{1}{2}x=\frac{0}{8}
Whakahekea te hautanga \frac{4}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x^{2}+\frac{1}{2}x=0
Whakawehe 0 ki te 8.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=\left(\frac{1}{4}\right)^{2}
Whakawehea te \frac{1}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{4}. Nā, tāpiria te pūrua o te \frac{1}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{1}{16}
Pūruatia \frac{1}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(x+\frac{1}{4}\right)^{2}=\frac{1}{16}
Tauwehea x^{2}+\frac{1}{2}x+\frac{1}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{\frac{1}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{1}{4}=\frac{1}{4} x+\frac{1}{4}=-\frac{1}{4}
Whakarūnātia.
x=0 x=-\frac{1}{2}
Me tango \frac{1}{4} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}