Whakaoti mō x
x = \frac{\sqrt{761} + 21}{8} \approx 6.073278556
x=\frac{21-\sqrt{761}}{8}\approx -0.823278556
Graph
Tohaina
Kua tāruatia ki te papatopenga
16x^{2}-84x=80
Whakamahia te āhuatanga tohatoha hei whakarea te 4x ki te 4x-21.
16x^{2}-84x-80=0
Tangohia te 80 mai i ngā taha e rua.
x=\frac{-\left(-84\right)±\sqrt{\left(-84\right)^{2}-4\times 16\left(-80\right)}}{2\times 16}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 16 mō a, -84 mō b, me -80 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-84\right)±\sqrt{7056-4\times 16\left(-80\right)}}{2\times 16}
Pūrua -84.
x=\frac{-\left(-84\right)±\sqrt{7056-64\left(-80\right)}}{2\times 16}
Whakareatia -4 ki te 16.
x=\frac{-\left(-84\right)±\sqrt{7056+5120}}{2\times 16}
Whakareatia -64 ki te -80.
x=\frac{-\left(-84\right)±\sqrt{12176}}{2\times 16}
Tāpiri 7056 ki te 5120.
x=\frac{-\left(-84\right)±4\sqrt{761}}{2\times 16}
Tuhia te pūtakerua o te 12176.
x=\frac{84±4\sqrt{761}}{2\times 16}
Ko te tauaro o -84 ko 84.
x=\frac{84±4\sqrt{761}}{32}
Whakareatia 2 ki te 16.
x=\frac{4\sqrt{761}+84}{32}
Nā, me whakaoti te whārite x=\frac{84±4\sqrt{761}}{32} ina he tāpiri te ±. Tāpiri 84 ki te 4\sqrt{761}.
x=\frac{\sqrt{761}+21}{8}
Whakawehe 84+4\sqrt{761} ki te 32.
x=\frac{84-4\sqrt{761}}{32}
Nā, me whakaoti te whārite x=\frac{84±4\sqrt{761}}{32} ina he tango te ±. Tango 4\sqrt{761} mai i 84.
x=\frac{21-\sqrt{761}}{8}
Whakawehe 84-4\sqrt{761} ki te 32.
x=\frac{\sqrt{761}+21}{8} x=\frac{21-\sqrt{761}}{8}
Kua oti te whārite te whakatau.
16x^{2}-84x=80
Whakamahia te āhuatanga tohatoha hei whakarea te 4x ki te 4x-21.
\frac{16x^{2}-84x}{16}=\frac{80}{16}
Whakawehea ngā taha e rua ki te 16.
x^{2}+\left(-\frac{84}{16}\right)x=\frac{80}{16}
Mā te whakawehe ki te 16 ka wetekia te whakareanga ki te 16.
x^{2}-\frac{21}{4}x=\frac{80}{16}
Whakahekea te hautanga \frac{-84}{16} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x^{2}-\frac{21}{4}x=5
Whakawehe 80 ki te 16.
x^{2}-\frac{21}{4}x+\left(-\frac{21}{8}\right)^{2}=5+\left(-\frac{21}{8}\right)^{2}
Whakawehea te -\frac{21}{4}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{21}{8}. Nā, tāpiria te pūrua o te -\frac{21}{8} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{21}{4}x+\frac{441}{64}=5+\frac{441}{64}
Pūruatia -\frac{21}{8} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{21}{4}x+\frac{441}{64}=\frac{761}{64}
Tāpiri 5 ki te \frac{441}{64}.
\left(x-\frac{21}{8}\right)^{2}=\frac{761}{64}
Tauwehea x^{2}-\frac{21}{4}x+\frac{441}{64}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{21}{8}\right)^{2}}=\sqrt{\frac{761}{64}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{21}{8}=\frac{\sqrt{761}}{8} x-\frac{21}{8}=-\frac{\sqrt{761}}{8}
Whakarūnātia.
x=\frac{\sqrt{761}+21}{8} x=\frac{21-\sqrt{761}}{8}
Me tāpiri \frac{21}{8} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}