Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4t^{2}+19t-5=0
Whakakapia te t mō te x^{2}.
t=\frac{-19±\sqrt{19^{2}-4\times 4\left(-5\right)}}{2\times 4}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 4 mō te a, te 19 mō te b, me te -5 mō te c i te ture pūrua.
t=\frac{-19±21}{8}
Mahia ngā tātaitai.
t=\frac{1}{4} t=-5
Whakaotia te whārite t=\frac{-19±21}{8} ina he tōrunga te ±, ina he tōraro te ±.
x=-\frac{1}{2} x=\frac{1}{2} x=-\sqrt{5}i x=\sqrt{5}i
I te mea ko x=t^{2}, ka riro ngā otinga mā te arotake i te x=±\sqrt{t} mō ia t.
4t^{2}+19t-5=0
Whakakapia te t mō te x^{2}.
t=\frac{-19±\sqrt{19^{2}-4\times 4\left(-5\right)}}{2\times 4}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 4 mō te a, te 19 mō te b, me te -5 mō te c i te ture pūrua.
t=\frac{-19±21}{8}
Mahia ngā tātaitai.
t=\frac{1}{4} t=-5
Whakaotia te whārite t=\frac{-19±21}{8} ina he tōrunga te ±, ina he tōraro te ±.
x=\frac{1}{2} x=-\frac{1}{2}
I te mea ko x=t^{2}, ka riro ngā otinga mā te arotake i te x=±\sqrt{t} mō t tōrunga.