Whakaoti mō x
x=-\frac{3}{4}=-0.75
x=3
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=-9 ab=4\left(-9\right)=-36
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 4x^{2}+ax+bx-9. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-36 2,-18 3,-12 4,-9 6,-6
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -36.
1-36=-35 2-18=-16 3-12=-9 4-9=-5 6-6=0
Tātaihia te tapeke mō ia takirua.
a=-12 b=3
Ko te otinga te takirua ka hoatu i te tapeke -9.
\left(4x^{2}-12x\right)+\left(3x-9\right)
Tuhia anō te 4x^{2}-9x-9 hei \left(4x^{2}-12x\right)+\left(3x-9\right).
4x\left(x-3\right)+3\left(x-3\right)
Tauwehea te 4x i te tuatahi me te 3 i te rōpū tuarua.
\left(x-3\right)\left(4x+3\right)
Whakatauwehea atu te kīanga pātahi x-3 mā te whakamahi i te āhuatanga tātai tohatoha.
x=3 x=-\frac{3}{4}
Hei kimi otinga whārite, me whakaoti te x-3=0 me te 4x+3=0.
4x^{2}-9x-9=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 4\left(-9\right)}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, -9 mō b, me -9 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-9\right)±\sqrt{81-4\times 4\left(-9\right)}}{2\times 4}
Pūrua -9.
x=\frac{-\left(-9\right)±\sqrt{81-16\left(-9\right)}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{-\left(-9\right)±\sqrt{81+144}}{2\times 4}
Whakareatia -16 ki te -9.
x=\frac{-\left(-9\right)±\sqrt{225}}{2\times 4}
Tāpiri 81 ki te 144.
x=\frac{-\left(-9\right)±15}{2\times 4}
Tuhia te pūtakerua o te 225.
x=\frac{9±15}{2\times 4}
Ko te tauaro o -9 ko 9.
x=\frac{9±15}{8}
Whakareatia 2 ki te 4.
x=\frac{24}{8}
Nā, me whakaoti te whārite x=\frac{9±15}{8} ina he tāpiri te ±. Tāpiri 9 ki te 15.
x=3
Whakawehe 24 ki te 8.
x=-\frac{6}{8}
Nā, me whakaoti te whārite x=\frac{9±15}{8} ina he tango te ±. Tango 15 mai i 9.
x=-\frac{3}{4}
Whakahekea te hautanga \frac{-6}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=3 x=-\frac{3}{4}
Kua oti te whārite te whakatau.
4x^{2}-9x-9=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
4x^{2}-9x-9-\left(-9\right)=-\left(-9\right)
Me tāpiri 9 ki ngā taha e rua o te whārite.
4x^{2}-9x=-\left(-9\right)
Mā te tango i te -9 i a ia ake anō ka toe ko te 0.
4x^{2}-9x=9
Tango -9 mai i 0.
\frac{4x^{2}-9x}{4}=\frac{9}{4}
Whakawehea ngā taha e rua ki te 4.
x^{2}-\frac{9}{4}x=\frac{9}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
x^{2}-\frac{9}{4}x+\left(-\frac{9}{8}\right)^{2}=\frac{9}{4}+\left(-\frac{9}{8}\right)^{2}
Whakawehea te -\frac{9}{4}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{9}{8}. Nā, tāpiria te pūrua o te -\frac{9}{8} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{9}{4}x+\frac{81}{64}=\frac{9}{4}+\frac{81}{64}
Pūruatia -\frac{9}{8} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{9}{4}x+\frac{81}{64}=\frac{225}{64}
Tāpiri \frac{9}{4} ki te \frac{81}{64} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{9}{8}\right)^{2}=\frac{225}{64}
Tauwehea x^{2}-\frac{9}{4}x+\frac{81}{64}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{8}\right)^{2}}=\sqrt{\frac{225}{64}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{9}{8}=\frac{15}{8} x-\frac{9}{8}=-\frac{15}{8}
Whakarūnātia.
x=3 x=-\frac{3}{4}
Me tāpiri \frac{9}{8} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}