Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4x^{2}=8
Me tāpiri te 8 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x^{2}=\frac{8}{4}
Whakawehea ngā taha e rua ki te 4.
x^{2}=2
Whakawehea te 8 ki te 4, kia riro ko 2.
x=\sqrt{2} x=-\sqrt{2}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
4x^{2}-8=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 4\left(-8\right)}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, 0 mō b, me -8 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 4\left(-8\right)}}{2\times 4}
Pūrua 0.
x=\frac{0±\sqrt{-16\left(-8\right)}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{0±\sqrt{128}}{2\times 4}
Whakareatia -16 ki te -8.
x=\frac{0±8\sqrt{2}}{2\times 4}
Tuhia te pūtakerua o te 128.
x=\frac{0±8\sqrt{2}}{8}
Whakareatia 2 ki te 4.
x=\sqrt{2}
Nā, me whakaoti te whārite x=\frac{0±8\sqrt{2}}{8} ina he tāpiri te ±.
x=-\sqrt{2}
Nā, me whakaoti te whārite x=\frac{0±8\sqrt{2}}{8} ina he tango te ±.
x=\sqrt{2} x=-\sqrt{2}
Kua oti te whārite te whakatau.