Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4x^{2}-6-2x^{2}=0
Tangohia te 2x^{2} mai i ngā taha e rua.
2x^{2}-6=0
Pahekotia te 4x^{2} me -2x^{2}, ka 2x^{2}.
2x^{2}=6
Me tāpiri te 6 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x^{2}=\frac{6}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}=3
Whakawehea te 6 ki te 2, kia riro ko 3.
x=\sqrt{3} x=-\sqrt{3}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
4x^{2}-6-2x^{2}=0
Tangohia te 2x^{2} mai i ngā taha e rua.
2x^{2}-6=0
Pahekotia te 4x^{2} me -2x^{2}, ka 2x^{2}.
x=\frac{0±\sqrt{0^{2}-4\times 2\left(-6\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 0 mō b, me -6 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 2\left(-6\right)}}{2\times 2}
Pūrua 0.
x=\frac{0±\sqrt{-8\left(-6\right)}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{0±\sqrt{48}}{2\times 2}
Whakareatia -8 ki te -6.
x=\frac{0±4\sqrt{3}}{2\times 2}
Tuhia te pūtakerua o te 48.
x=\frac{0±4\sqrt{3}}{4}
Whakareatia 2 ki te 2.
x=\sqrt{3}
Nā, me whakaoti te whārite x=\frac{0±4\sqrt{3}}{4} ina he tāpiri te ±.
x=-\sqrt{3}
Nā, me whakaoti te whārite x=\frac{0±4\sqrt{3}}{4} ina he tango te ±.
x=\sqrt{3} x=-\sqrt{3}
Kua oti te whārite te whakatau.