Whakaoti mō x
x=4
x=-4
Graph
Pātaitai
Polynomial
4 x ^ { 2 } - 30 = 34
Tohaina
Kua tāruatia ki te papatopenga
4x^{2}-30-34=0
Tangohia te 34 mai i ngā taha e rua.
4x^{2}-64=0
Tangohia te 34 i te -30, ka -64.
x^{2}-16=0
Whakawehea ngā taha e rua ki te 4.
\left(x-4\right)\left(x+4\right)=0
Whakaarohia te x^{2}-16. Tuhia anō te x^{2}-16 hei x^{2}-4^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=4 x=-4
Hei kimi otinga whārite, me whakaoti te x-4=0 me te x+4=0.
4x^{2}=34+30
Me tāpiri te 30 ki ngā taha e rua.
4x^{2}=64
Tāpirihia te 34 ki te 30, ka 64.
x^{2}=\frac{64}{4}
Whakawehea ngā taha e rua ki te 4.
x^{2}=16
Whakawehea te 64 ki te 4, kia riro ko 16.
x=4 x=-4
Tuhia te pūtakerua o ngā taha e rua o te whārite.
4x^{2}-30-34=0
Tangohia te 34 mai i ngā taha e rua.
4x^{2}-64=0
Tangohia te 34 i te -30, ka -64.
x=\frac{0±\sqrt{0^{2}-4\times 4\left(-64\right)}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, 0 mō b, me -64 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 4\left(-64\right)}}{2\times 4}
Pūrua 0.
x=\frac{0±\sqrt{-16\left(-64\right)}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{0±\sqrt{1024}}{2\times 4}
Whakareatia -16 ki te -64.
x=\frac{0±32}{2\times 4}
Tuhia te pūtakerua o te 1024.
x=\frac{0±32}{8}
Whakareatia 2 ki te 4.
x=4
Nā, me whakaoti te whārite x=\frac{0±32}{8} ina he tāpiri te ±. Whakawehe 32 ki te 8.
x=-4
Nā, me whakaoti te whārite x=\frac{0±32}{8} ina he tango te ±. Whakawehe -32 ki te 8.
x=4 x=-4
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}