Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4x^{2}=28
Me tāpiri te 28 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x^{2}=\frac{28}{4}
Whakawehea ngā taha e rua ki te 4.
x^{2}=7
Whakawehea te 28 ki te 4, kia riro ko 7.
x=\sqrt{7} x=-\sqrt{7}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
4x^{2}-28=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 4\left(-28\right)}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, 0 mō b, me -28 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 4\left(-28\right)}}{2\times 4}
Pūrua 0.
x=\frac{0±\sqrt{-16\left(-28\right)}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{0±\sqrt{448}}{2\times 4}
Whakareatia -16 ki te -28.
x=\frac{0±8\sqrt{7}}{2\times 4}
Tuhia te pūtakerua o te 448.
x=\frac{0±8\sqrt{7}}{8}
Whakareatia 2 ki te 4.
x=\sqrt{7}
Nā, me whakaoti te whārite x=\frac{0±8\sqrt{7}}{8} ina he tāpiri te ±.
x=-\sqrt{7}
Nā, me whakaoti te whārite x=\frac{0±8\sqrt{7}}{8} ina he tango te ±.
x=\sqrt{7} x=-\sqrt{7}
Kua oti te whārite te whakatau.