Whakaoti mō x
x = \frac{\sqrt{73} + 1}{4} \approx 2.386000936
x=\frac{1-\sqrt{73}}{4}\approx -1.886000936
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x^{2}-2x-18=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 4\left(-18\right)}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, -2 mō b, me -18 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 4\left(-18\right)}}{2\times 4}
Pūrua -2.
x=\frac{-\left(-2\right)±\sqrt{4-16\left(-18\right)}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{-\left(-2\right)±\sqrt{4+288}}{2\times 4}
Whakareatia -16 ki te -18.
x=\frac{-\left(-2\right)±\sqrt{292}}{2\times 4}
Tāpiri 4 ki te 288.
x=\frac{-\left(-2\right)±2\sqrt{73}}{2\times 4}
Tuhia te pūtakerua o te 292.
x=\frac{2±2\sqrt{73}}{2\times 4}
Ko te tauaro o -2 ko 2.
x=\frac{2±2\sqrt{73}}{8}
Whakareatia 2 ki te 4.
x=\frac{2\sqrt{73}+2}{8}
Nā, me whakaoti te whārite x=\frac{2±2\sqrt{73}}{8} ina he tāpiri te ±. Tāpiri 2 ki te 2\sqrt{73}.
x=\frac{\sqrt{73}+1}{4}
Whakawehe 2+2\sqrt{73} ki te 8.
x=\frac{2-2\sqrt{73}}{8}
Nā, me whakaoti te whārite x=\frac{2±2\sqrt{73}}{8} ina he tango te ±. Tango 2\sqrt{73} mai i 2.
x=\frac{1-\sqrt{73}}{4}
Whakawehe 2-2\sqrt{73} ki te 8.
x=\frac{\sqrt{73}+1}{4} x=\frac{1-\sqrt{73}}{4}
Kua oti te whārite te whakatau.
4x^{2}-2x-18=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
4x^{2}-2x-18-\left(-18\right)=-\left(-18\right)
Me tāpiri 18 ki ngā taha e rua o te whārite.
4x^{2}-2x=-\left(-18\right)
Mā te tango i te -18 i a ia ake anō ka toe ko te 0.
4x^{2}-2x=18
Tango -18 mai i 0.
\frac{4x^{2}-2x}{4}=\frac{18}{4}
Whakawehea ngā taha e rua ki te 4.
x^{2}+\left(-\frac{2}{4}\right)x=\frac{18}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
x^{2}-\frac{1}{2}x=\frac{18}{4}
Whakahekea te hautanga \frac{-2}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}-\frac{1}{2}x=\frac{9}{2}
Whakahekea te hautanga \frac{18}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=\frac{9}{2}+\left(-\frac{1}{4}\right)^{2}
Whakawehea te -\frac{1}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{4}. Nā, tāpiria te pūrua o te -\frac{1}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{9}{2}+\frac{1}{16}
Pūruatia -\frac{1}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{73}{16}
Tāpiri \frac{9}{2} ki te \frac{1}{16} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{1}{4}\right)^{2}=\frac{73}{16}
Tauwehea x^{2}-\frac{1}{2}x+\frac{1}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{73}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{4}=\frac{\sqrt{73}}{4} x-\frac{1}{4}=-\frac{\sqrt{73}}{4}
Whakarūnātia.
x=\frac{\sqrt{73}+1}{4} x=\frac{1-\sqrt{73}}{4}
Me tāpiri \frac{1}{4} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}