Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4x^{2}-2x+9=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 4\times 9}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, -2 mō b, me 9 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 4\times 9}}{2\times 4}
Pūrua -2.
x=\frac{-\left(-2\right)±\sqrt{4-16\times 9}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{-\left(-2\right)±\sqrt{4-144}}{2\times 4}
Whakareatia -16 ki te 9.
x=\frac{-\left(-2\right)±\sqrt{-140}}{2\times 4}
Tāpiri 4 ki te -144.
x=\frac{-\left(-2\right)±2\sqrt{35}i}{2\times 4}
Tuhia te pūtakerua o te -140.
x=\frac{2±2\sqrt{35}i}{2\times 4}
Ko te tauaro o -2 ko 2.
x=\frac{2±2\sqrt{35}i}{8}
Whakareatia 2 ki te 4.
x=\frac{2+2\sqrt{35}i}{8}
Nā, me whakaoti te whārite x=\frac{2±2\sqrt{35}i}{8} ina he tāpiri te ±. Tāpiri 2 ki te 2i\sqrt{35}.
x=\frac{1+\sqrt{35}i}{4}
Whakawehe 2+2i\sqrt{35} ki te 8.
x=\frac{-2\sqrt{35}i+2}{8}
Nā, me whakaoti te whārite x=\frac{2±2\sqrt{35}i}{8} ina he tango te ±. Tango 2i\sqrt{35} mai i 2.
x=\frac{-\sqrt{35}i+1}{4}
Whakawehe 2-2i\sqrt{35} ki te 8.
x=\frac{1+\sqrt{35}i}{4} x=\frac{-\sqrt{35}i+1}{4}
Kua oti te whārite te whakatau.
4x^{2}-2x+9=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
4x^{2}-2x+9-9=-9
Me tango 9 mai i ngā taha e rua o te whārite.
4x^{2}-2x=-9
Mā te tango i te 9 i a ia ake anō ka toe ko te 0.
\frac{4x^{2}-2x}{4}=-\frac{9}{4}
Whakawehea ngā taha e rua ki te 4.
x^{2}+\left(-\frac{2}{4}\right)x=-\frac{9}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
x^{2}-\frac{1}{2}x=-\frac{9}{4}
Whakahekea te hautanga \frac{-2}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=-\frac{9}{4}+\left(-\frac{1}{4}\right)^{2}
Whakawehea te -\frac{1}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{4}. Nā, tāpiria te pūrua o te -\frac{1}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{1}{2}x+\frac{1}{16}=-\frac{9}{4}+\frac{1}{16}
Pūruatia -\frac{1}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{1}{2}x+\frac{1}{16}=-\frac{35}{16}
Tāpiri -\frac{9}{4} ki te \frac{1}{16} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{1}{4}\right)^{2}=-\frac{35}{16}
Tauwehea x^{2}-\frac{1}{2}x+\frac{1}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{-\frac{35}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{4}=\frac{\sqrt{35}i}{4} x-\frac{1}{4}=-\frac{\sqrt{35}i}{4}
Whakarūnātia.
x=\frac{1+\sqrt{35}i}{4} x=\frac{-\sqrt{35}i+1}{4}
Me tāpiri \frac{1}{4} ki ngā taha e rua o te whārite.