Whakaoti mō x
x=-\frac{1}{2}=-0.5
x=4
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x^{2}-7x-4=0
Whakawehea ngā taha e rua ki te 2.
a+b=-7 ab=2\left(-4\right)=-8
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 2x^{2}+ax+bx-4. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-8 2,-4
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -8.
1-8=-7 2-4=-2
Tātaihia te tapeke mō ia takirua.
a=-8 b=1
Ko te otinga te takirua ka hoatu i te tapeke -7.
\left(2x^{2}-8x\right)+\left(x-4\right)
Tuhia anō te 2x^{2}-7x-4 hei \left(2x^{2}-8x\right)+\left(x-4\right).
2x\left(x-4\right)+x-4
Whakatauwehea atu 2x i te 2x^{2}-8x.
\left(x-4\right)\left(2x+1\right)
Whakatauwehea atu te kīanga pātahi x-4 mā te whakamahi i te āhuatanga tātai tohatoha.
x=4 x=-\frac{1}{2}
Hei kimi otinga whārite, me whakaoti te x-4=0 me te 2x+1=0.
4x^{2}-14x-8=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 4\left(-8\right)}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, -14 mō b, me -8 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-14\right)±\sqrt{196-4\times 4\left(-8\right)}}{2\times 4}
Pūrua -14.
x=\frac{-\left(-14\right)±\sqrt{196-16\left(-8\right)}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{-\left(-14\right)±\sqrt{196+128}}{2\times 4}
Whakareatia -16 ki te -8.
x=\frac{-\left(-14\right)±\sqrt{324}}{2\times 4}
Tāpiri 196 ki te 128.
x=\frac{-\left(-14\right)±18}{2\times 4}
Tuhia te pūtakerua o te 324.
x=\frac{14±18}{2\times 4}
Ko te tauaro o -14 ko 14.
x=\frac{14±18}{8}
Whakareatia 2 ki te 4.
x=\frac{32}{8}
Nā, me whakaoti te whārite x=\frac{14±18}{8} ina he tāpiri te ±. Tāpiri 14 ki te 18.
x=4
Whakawehe 32 ki te 8.
x=-\frac{4}{8}
Nā, me whakaoti te whārite x=\frac{14±18}{8} ina he tango te ±. Tango 18 mai i 14.
x=-\frac{1}{2}
Whakahekea te hautanga \frac{-4}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=4 x=-\frac{1}{2}
Kua oti te whārite te whakatau.
4x^{2}-14x-8=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
4x^{2}-14x-8-\left(-8\right)=-\left(-8\right)
Me tāpiri 8 ki ngā taha e rua o te whārite.
4x^{2}-14x=-\left(-8\right)
Mā te tango i te -8 i a ia ake anō ka toe ko te 0.
4x^{2}-14x=8
Tango -8 mai i 0.
\frac{4x^{2}-14x}{4}=\frac{8}{4}
Whakawehea ngā taha e rua ki te 4.
x^{2}+\left(-\frac{14}{4}\right)x=\frac{8}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
x^{2}-\frac{7}{2}x=\frac{8}{4}
Whakahekea te hautanga \frac{-14}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}-\frac{7}{2}x=2
Whakawehe 8 ki te 4.
x^{2}-\frac{7}{2}x+\left(-\frac{7}{4}\right)^{2}=2+\left(-\frac{7}{4}\right)^{2}
Whakawehea te -\frac{7}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{7}{4}. Nā, tāpiria te pūrua o te -\frac{7}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{7}{2}x+\frac{49}{16}=2+\frac{49}{16}
Pūruatia -\frac{7}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{7}{2}x+\frac{49}{16}=\frac{81}{16}
Tāpiri 2 ki te \frac{49}{16}.
\left(x-\frac{7}{4}\right)^{2}=\frac{81}{16}
Tauwehea x^{2}-\frac{7}{2}x+\frac{49}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{4}\right)^{2}}=\sqrt{\frac{81}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{7}{4}=\frac{9}{4} x-\frac{7}{4}=-\frac{9}{4}
Whakarūnātia.
x=4 x=-\frac{1}{2}
Me tāpiri \frac{7}{4} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}