Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4x^{2}-14x=9
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
4x^{2}-14x-9=9-9
Me tango 9 mai i ngā taha e rua o te whārite.
4x^{2}-14x-9=0
Mā te tango i te 9 i a ia ake anō ka toe ko te 0.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 4\left(-9\right)}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, -14 mō b, me -9 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-14\right)±\sqrt{196-4\times 4\left(-9\right)}}{2\times 4}
Pūrua -14.
x=\frac{-\left(-14\right)±\sqrt{196-16\left(-9\right)}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{-\left(-14\right)±\sqrt{196+144}}{2\times 4}
Whakareatia -16 ki te -9.
x=\frac{-\left(-14\right)±\sqrt{340}}{2\times 4}
Tāpiri 196 ki te 144.
x=\frac{-\left(-14\right)±2\sqrt{85}}{2\times 4}
Tuhia te pūtakerua o te 340.
x=\frac{14±2\sqrt{85}}{2\times 4}
Ko te tauaro o -14 ko 14.
x=\frac{14±2\sqrt{85}}{8}
Whakareatia 2 ki te 4.
x=\frac{2\sqrt{85}+14}{8}
Nā, me whakaoti te whārite x=\frac{14±2\sqrt{85}}{8} ina he tāpiri te ±. Tāpiri 14 ki te 2\sqrt{85}.
x=\frac{\sqrt{85}+7}{4}
Whakawehe 14+2\sqrt{85} ki te 8.
x=\frac{14-2\sqrt{85}}{8}
Nā, me whakaoti te whārite x=\frac{14±2\sqrt{85}}{8} ina he tango te ±. Tango 2\sqrt{85} mai i 14.
x=\frac{7-\sqrt{85}}{4}
Whakawehe 14-2\sqrt{85} ki te 8.
x=\frac{\sqrt{85}+7}{4} x=\frac{7-\sqrt{85}}{4}
Kua oti te whārite te whakatau.
4x^{2}-14x=9
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{4x^{2}-14x}{4}=\frac{9}{4}
Whakawehea ngā taha e rua ki te 4.
x^{2}+\left(-\frac{14}{4}\right)x=\frac{9}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
x^{2}-\frac{7}{2}x=\frac{9}{4}
Whakahekea te hautanga \frac{-14}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}-\frac{7}{2}x+\left(-\frac{7}{4}\right)^{2}=\frac{9}{4}+\left(-\frac{7}{4}\right)^{2}
Whakawehea te -\frac{7}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{7}{4}. Nā, tāpiria te pūrua o te -\frac{7}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{7}{2}x+\frac{49}{16}=\frac{9}{4}+\frac{49}{16}
Pūruatia -\frac{7}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{7}{2}x+\frac{49}{16}=\frac{85}{16}
Tāpiri \frac{9}{4} ki te \frac{49}{16} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{7}{4}\right)^{2}=\frac{85}{16}
Tauwehea x^{2}-\frac{7}{2}x+\frac{49}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{4}\right)^{2}}=\sqrt{\frac{85}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{7}{4}=\frac{\sqrt{85}}{4} x-\frac{7}{4}=-\frac{\sqrt{85}}{4}
Whakarūnātia.
x=\frac{\sqrt{85}+7}{4} x=\frac{7-\sqrt{85}}{4}
Me tāpiri \frac{7}{4} ki ngā taha e rua o te whārite.