Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=-12 ab=4\left(-27\right)=-108
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 4x^{2}+ax+bx-27. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-108 2,-54 3,-36 4,-27 6,-18 9,-12
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -108.
1-108=-107 2-54=-52 3-36=-33 4-27=-23 6-18=-12 9-12=-3
Tātaihia te tapeke mō ia takirua.
a=-18 b=6
Ko te otinga te takirua ka hoatu i te tapeke -12.
\left(4x^{2}-18x\right)+\left(6x-27\right)
Tuhia anō te 4x^{2}-12x-27 hei \left(4x^{2}-18x\right)+\left(6x-27\right).
2x\left(2x-9\right)+3\left(2x-9\right)
Tauwehea te 2x i te tuatahi me te 3 i te rōpū tuarua.
\left(2x-9\right)\left(2x+3\right)
Whakatauwehea atu te kīanga pātahi 2x-9 mā te whakamahi i te āhuatanga tātai tohatoha.
x=\frac{9}{2} x=-\frac{3}{2}
Hei kimi otinga whārite, me whakaoti te 2x-9=0 me te 2x+3=0.
4x^{2}-12x-27=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 4\left(-27\right)}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, -12 mō b, me -27 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 4\left(-27\right)}}{2\times 4}
Pūrua -12.
x=\frac{-\left(-12\right)±\sqrt{144-16\left(-27\right)}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{-\left(-12\right)±\sqrt{144+432}}{2\times 4}
Whakareatia -16 ki te -27.
x=\frac{-\left(-12\right)±\sqrt{576}}{2\times 4}
Tāpiri 144 ki te 432.
x=\frac{-\left(-12\right)±24}{2\times 4}
Tuhia te pūtakerua o te 576.
x=\frac{12±24}{2\times 4}
Ko te tauaro o -12 ko 12.
x=\frac{12±24}{8}
Whakareatia 2 ki te 4.
x=\frac{36}{8}
Nā, me whakaoti te whārite x=\frac{12±24}{8} ina he tāpiri te ±. Tāpiri 12 ki te 24.
x=\frac{9}{2}
Whakahekea te hautanga \frac{36}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=-\frac{12}{8}
Nā, me whakaoti te whārite x=\frac{12±24}{8} ina he tango te ±. Tango 24 mai i 12.
x=-\frac{3}{2}
Whakahekea te hautanga \frac{-12}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=\frac{9}{2} x=-\frac{3}{2}
Kua oti te whārite te whakatau.
4x^{2}-12x-27=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
4x^{2}-12x-27-\left(-27\right)=-\left(-27\right)
Me tāpiri 27 ki ngā taha e rua o te whārite.
4x^{2}-12x=-\left(-27\right)
Mā te tango i te -27 i a ia ake anō ka toe ko te 0.
4x^{2}-12x=27
Tango -27 mai i 0.
\frac{4x^{2}-12x}{4}=\frac{27}{4}
Whakawehea ngā taha e rua ki te 4.
x^{2}+\left(-\frac{12}{4}\right)x=\frac{27}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
x^{2}-3x=\frac{27}{4}
Whakawehe -12 ki te 4.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=\frac{27}{4}+\left(-\frac{3}{2}\right)^{2}
Whakawehea te -3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{3}{2}. Nā, tāpiria te pūrua o te -\frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-3x+\frac{9}{4}=\frac{27+9}{4}
Pūruatia -\frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-3x+\frac{9}{4}=9
Tāpiri \frac{27}{4} ki te \frac{9}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{3}{2}\right)^{2}=9
Tauwehea x^{2}-3x+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{9}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{3}{2}=3 x-\frac{3}{2}=-3
Whakarūnātia.
x=\frac{9}{2} x=-\frac{3}{2}
Me tāpiri \frac{3}{2} ki ngā taha e rua o te whārite.