Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=-12 ab=4\times 5=20
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 4x^{2}+ax+bx+5. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-20 -2,-10 -4,-5
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 20.
-1-20=-21 -2-10=-12 -4-5=-9
Tātaihia te tapeke mō ia takirua.
a=-10 b=-2
Ko te otinga te takirua ka hoatu i te tapeke -12.
\left(4x^{2}-10x\right)+\left(-2x+5\right)
Tuhia anō te 4x^{2}-12x+5 hei \left(4x^{2}-10x\right)+\left(-2x+5\right).
2x\left(2x-5\right)-\left(2x-5\right)
Tauwehea te 2x i te tuatahi me te -1 i te rōpū tuarua.
\left(2x-5\right)\left(2x-1\right)
Whakatauwehea atu te kīanga pātahi 2x-5 mā te whakamahi i te āhuatanga tātai tohatoha.
4x^{2}-12x+5=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 4\times 5}}{2\times 4}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 4\times 5}}{2\times 4}
Pūrua -12.
x=\frac{-\left(-12\right)±\sqrt{144-16\times 5}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{-\left(-12\right)±\sqrt{144-80}}{2\times 4}
Whakareatia -16 ki te 5.
x=\frac{-\left(-12\right)±\sqrt{64}}{2\times 4}
Tāpiri 144 ki te -80.
x=\frac{-\left(-12\right)±8}{2\times 4}
Tuhia te pūtakerua o te 64.
x=\frac{12±8}{2\times 4}
Ko te tauaro o -12 ko 12.
x=\frac{12±8}{8}
Whakareatia 2 ki te 4.
x=\frac{20}{8}
Nā, me whakaoti te whārite x=\frac{12±8}{8} ina he tāpiri te ±. Tāpiri 12 ki te 8.
x=\frac{5}{2}
Whakahekea te hautanga \frac{20}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=\frac{4}{8}
Nā, me whakaoti te whārite x=\frac{12±8}{8} ina he tango te ±. Tango 8 mai i 12.
x=\frac{1}{2}
Whakahekea te hautanga \frac{4}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
4x^{2}-12x+5=4\left(x-\frac{5}{2}\right)\left(x-\frac{1}{2}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{5}{2} mō te x_{1} me te \frac{1}{2} mō te x_{2}.
4x^{2}-12x+5=4\times \frac{2x-5}{2}\left(x-\frac{1}{2}\right)
Tango \frac{5}{2} mai i x mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
4x^{2}-12x+5=4\times \frac{2x-5}{2}\times \frac{2x-1}{2}
Tango \frac{1}{2} mai i x mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
4x^{2}-12x+5=4\times \frac{\left(2x-5\right)\left(2x-1\right)}{2\times 2}
Whakareatia \frac{2x-5}{2} ki te \frac{2x-1}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
4x^{2}-12x+5=4\times \frac{\left(2x-5\right)\left(2x-1\right)}{4}
Whakareatia 2 ki te 2.
4x^{2}-12x+5=\left(2x-5\right)\left(2x-1\right)
Whakakorea atu te tauwehe pūnoa nui rawa 4 i roto i te 4 me te 4.