Whakaoti mō x
x = \frac{\sqrt{201} - 3}{8} \approx 1.39718086
x=\frac{-\sqrt{201}-3}{8}\approx -2.14718086
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x^{2}-12=-3x
Tangohia te 12 mai i ngā taha e rua.
4x^{2}-12+3x=0
Me tāpiri te 3x ki ngā taha e rua.
4x^{2}+3x-12=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-3±\sqrt{3^{2}-4\times 4\left(-12\right)}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, 3 mō b, me -12 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\times 4\left(-12\right)}}{2\times 4}
Pūrua 3.
x=\frac{-3±\sqrt{9-16\left(-12\right)}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{-3±\sqrt{9+192}}{2\times 4}
Whakareatia -16 ki te -12.
x=\frac{-3±\sqrt{201}}{2\times 4}
Tāpiri 9 ki te 192.
x=\frac{-3±\sqrt{201}}{8}
Whakareatia 2 ki te 4.
x=\frac{\sqrt{201}-3}{8}
Nā, me whakaoti te whārite x=\frac{-3±\sqrt{201}}{8} ina he tāpiri te ±. Tāpiri -3 ki te \sqrt{201}.
x=\frac{-\sqrt{201}-3}{8}
Nā, me whakaoti te whārite x=\frac{-3±\sqrt{201}}{8} ina he tango te ±. Tango \sqrt{201} mai i -3.
x=\frac{\sqrt{201}-3}{8} x=\frac{-\sqrt{201}-3}{8}
Kua oti te whārite te whakatau.
4x^{2}+3x=12
Me tāpiri te 3x ki ngā taha e rua.
\frac{4x^{2}+3x}{4}=\frac{12}{4}
Whakawehea ngā taha e rua ki te 4.
x^{2}+\frac{3}{4}x=\frac{12}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
x^{2}+\frac{3}{4}x=3
Whakawehe 12 ki te 4.
x^{2}+\frac{3}{4}x+\left(\frac{3}{8}\right)^{2}=3+\left(\frac{3}{8}\right)^{2}
Whakawehea te \frac{3}{4}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{3}{8}. Nā, tāpiria te pūrua o te \frac{3}{8} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{3}{4}x+\frac{9}{64}=3+\frac{9}{64}
Pūruatia \frac{3}{8} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{3}{4}x+\frac{9}{64}=\frac{201}{64}
Tāpiri 3 ki te \frac{9}{64}.
\left(x+\frac{3}{8}\right)^{2}=\frac{201}{64}
Tauwehea x^{2}+\frac{3}{4}x+\frac{9}{64}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{8}\right)^{2}}=\sqrt{\frac{201}{64}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{3}{8}=\frac{\sqrt{201}}{8} x+\frac{3}{8}=-\frac{\sqrt{201}}{8}
Whakarūnātia.
x=\frac{\sqrt{201}-3}{8} x=\frac{-\sqrt{201}-3}{8}
Me tango \frac{3}{8} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}