Whakaoti mō x
x=\frac{\sqrt{2}}{2}-1\approx -0.292893219
x=-\frac{\sqrt{2}}{2}-1\approx -1.707106781
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x^{2}+8x+2=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-8±\sqrt{8^{2}-4\times 4\times 2}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, 8 mō b, me 2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\times 4\times 2}}{2\times 4}
Pūrua 8.
x=\frac{-8±\sqrt{64-16\times 2}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{-8±\sqrt{64-32}}{2\times 4}
Whakareatia -16 ki te 2.
x=\frac{-8±\sqrt{32}}{2\times 4}
Tāpiri 64 ki te -32.
x=\frac{-8±4\sqrt{2}}{2\times 4}
Tuhia te pūtakerua o te 32.
x=\frac{-8±4\sqrt{2}}{8}
Whakareatia 2 ki te 4.
x=\frac{4\sqrt{2}-8}{8}
Nā, me whakaoti te whārite x=\frac{-8±4\sqrt{2}}{8} ina he tāpiri te ±. Tāpiri -8 ki te 4\sqrt{2}.
x=\frac{\sqrt{2}}{2}-1
Whakawehe -8+4\sqrt{2} ki te 8.
x=\frac{-4\sqrt{2}-8}{8}
Nā, me whakaoti te whārite x=\frac{-8±4\sqrt{2}}{8} ina he tango te ±. Tango 4\sqrt{2} mai i -8.
x=-\frac{\sqrt{2}}{2}-1
Whakawehe -8-4\sqrt{2} ki te 8.
x=\frac{\sqrt{2}}{2}-1 x=-\frac{\sqrt{2}}{2}-1
Kua oti te whārite te whakatau.
4x^{2}+8x+2=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
4x^{2}+8x+2-2=-2
Me tango 2 mai i ngā taha e rua o te whārite.
4x^{2}+8x=-2
Mā te tango i te 2 i a ia ake anō ka toe ko te 0.
\frac{4x^{2}+8x}{4}=-\frac{2}{4}
Whakawehea ngā taha e rua ki te 4.
x^{2}+\frac{8}{4}x=-\frac{2}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
x^{2}+2x=-\frac{2}{4}
Whakawehe 8 ki te 4.
x^{2}+2x=-\frac{1}{2}
Whakahekea te hautanga \frac{-2}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}+2x+1^{2}=-\frac{1}{2}+1^{2}
Whakawehea te 2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 1. Nā, tāpiria te pūrua o te 1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+2x+1=-\frac{1}{2}+1
Pūrua 1.
x^{2}+2x+1=\frac{1}{2}
Tāpiri -\frac{1}{2} ki te 1.
\left(x+1\right)^{2}=\frac{1}{2}
Tauwehea x^{2}+2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{\frac{1}{2}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+1=\frac{\sqrt{2}}{2} x+1=-\frac{\sqrt{2}}{2}
Whakarūnātia.
x=\frac{\sqrt{2}}{2}-1 x=-\frac{\sqrt{2}}{2}-1
Me tango 1 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}