Whakaoti mō x
x=\frac{\sqrt{41}-3}{4}\approx 0.850781059
x=\frac{-\sqrt{41}-3}{4}\approx -2.350781059
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x^{2}+7x-8-x=0
Tangohia te x mai i ngā taha e rua.
4x^{2}+6x-8=0
Pahekotia te 7x me -x, ka 6x.
x=\frac{-6±\sqrt{6^{2}-4\times 4\left(-8\right)}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, 6 mō b, me -8 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\times 4\left(-8\right)}}{2\times 4}
Pūrua 6.
x=\frac{-6±\sqrt{36-16\left(-8\right)}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{-6±\sqrt{36+128}}{2\times 4}
Whakareatia -16 ki te -8.
x=\frac{-6±\sqrt{164}}{2\times 4}
Tāpiri 36 ki te 128.
x=\frac{-6±2\sqrt{41}}{2\times 4}
Tuhia te pūtakerua o te 164.
x=\frac{-6±2\sqrt{41}}{8}
Whakareatia 2 ki te 4.
x=\frac{2\sqrt{41}-6}{8}
Nā, me whakaoti te whārite x=\frac{-6±2\sqrt{41}}{8} ina he tāpiri te ±. Tāpiri -6 ki te 2\sqrt{41}.
x=\frac{\sqrt{41}-3}{4}
Whakawehe -6+2\sqrt{41} ki te 8.
x=\frac{-2\sqrt{41}-6}{8}
Nā, me whakaoti te whārite x=\frac{-6±2\sqrt{41}}{8} ina he tango te ±. Tango 2\sqrt{41} mai i -6.
x=\frac{-\sqrt{41}-3}{4}
Whakawehe -6-2\sqrt{41} ki te 8.
x=\frac{\sqrt{41}-3}{4} x=\frac{-\sqrt{41}-3}{4}
Kua oti te whārite te whakatau.
4x^{2}+7x-8-x=0
Tangohia te x mai i ngā taha e rua.
4x^{2}+6x-8=0
Pahekotia te 7x me -x, ka 6x.
4x^{2}+6x=8
Me tāpiri te 8 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{4x^{2}+6x}{4}=\frac{8}{4}
Whakawehea ngā taha e rua ki te 4.
x^{2}+\frac{6}{4}x=\frac{8}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
x^{2}+\frac{3}{2}x=\frac{8}{4}
Whakahekea te hautanga \frac{6}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}+\frac{3}{2}x=2
Whakawehe 8 ki te 4.
x^{2}+\frac{3}{2}x+\left(\frac{3}{4}\right)^{2}=2+\left(\frac{3}{4}\right)^{2}
Whakawehea te \frac{3}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{3}{4}. Nā, tāpiria te pūrua o te \frac{3}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{3}{2}x+\frac{9}{16}=2+\frac{9}{16}
Pūruatia \frac{3}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{41}{16}
Tāpiri 2 ki te \frac{9}{16}.
\left(x+\frac{3}{4}\right)^{2}=\frac{41}{16}
Tauwehea x^{2}+\frac{3}{2}x+\frac{9}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{4}\right)^{2}}=\sqrt{\frac{41}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{3}{4}=\frac{\sqrt{41}}{4} x+\frac{3}{4}=-\frac{\sqrt{41}}{4}
Whakarūnātia.
x=\frac{\sqrt{41}-3}{4} x=\frac{-\sqrt{41}-3}{4}
Me tango \frac{3}{4} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}