Whakaoti mō x
x = -\frac{27}{2} = -13\frac{1}{2} = -13.5
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=48 ab=4\left(-81\right)=-324
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 4x^{2}+ax+bx-81. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,324 -2,162 -3,108 -4,81 -6,54 -9,36 -12,27 -18,18
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -324.
-1+324=323 -2+162=160 -3+108=105 -4+81=77 -6+54=48 -9+36=27 -12+27=15 -18+18=0
Tātaihia te tapeke mō ia takirua.
a=-6 b=54
Ko te otinga te takirua ka hoatu i te tapeke 48.
\left(4x^{2}-6x\right)+\left(54x-81\right)
Tuhia anō te 4x^{2}+48x-81 hei \left(4x^{2}-6x\right)+\left(54x-81\right).
2x\left(2x-3\right)+27\left(2x-3\right)
Tauwehea te 2x i te tuatahi me te 27 i te rōpū tuarua.
\left(2x-3\right)\left(2x+27\right)
Whakatauwehea atu te kīanga pātahi 2x-3 mā te whakamahi i te āhuatanga tātai tohatoha.
x=\frac{3}{2} x=-\frac{27}{2}
Hei kimi otinga whārite, me whakaoti te 2x-3=0 me te 2x+27=0.
4x^{2}+48x-81=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-48±\sqrt{48^{2}-4\times 4\left(-81\right)}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, 48 mō b, me -81 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-48±\sqrt{2304-4\times 4\left(-81\right)}}{2\times 4}
Pūrua 48.
x=\frac{-48±\sqrt{2304-16\left(-81\right)}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{-48±\sqrt{2304+1296}}{2\times 4}
Whakareatia -16 ki te -81.
x=\frac{-48±\sqrt{3600}}{2\times 4}
Tāpiri 2304 ki te 1296.
x=\frac{-48±60}{2\times 4}
Tuhia te pūtakerua o te 3600.
x=\frac{-48±60}{8}
Whakareatia 2 ki te 4.
x=\frac{12}{8}
Nā, me whakaoti te whārite x=\frac{-48±60}{8} ina he tāpiri te ±. Tāpiri -48 ki te 60.
x=\frac{3}{2}
Whakahekea te hautanga \frac{12}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=-\frac{108}{8}
Nā, me whakaoti te whārite x=\frac{-48±60}{8} ina he tango te ±. Tango 60 mai i -48.
x=-\frac{27}{2}
Whakahekea te hautanga \frac{-108}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=\frac{3}{2} x=-\frac{27}{2}
Kua oti te whārite te whakatau.
4x^{2}+48x-81=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
4x^{2}+48x-81-\left(-81\right)=-\left(-81\right)
Me tāpiri 81 ki ngā taha e rua o te whārite.
4x^{2}+48x=-\left(-81\right)
Mā te tango i te -81 i a ia ake anō ka toe ko te 0.
4x^{2}+48x=81
Tango -81 mai i 0.
\frac{4x^{2}+48x}{4}=\frac{81}{4}
Whakawehea ngā taha e rua ki te 4.
x^{2}+\frac{48}{4}x=\frac{81}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
x^{2}+12x=\frac{81}{4}
Whakawehe 48 ki te 4.
x^{2}+12x+6^{2}=\frac{81}{4}+6^{2}
Whakawehea te 12, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 6. Nā, tāpiria te pūrua o te 6 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+12x+36=\frac{81}{4}+36
Pūrua 6.
x^{2}+12x+36=\frac{225}{4}
Tāpiri \frac{81}{4} ki te 36.
\left(x+6\right)^{2}=\frac{225}{4}
Tauwehea x^{2}+12x+36. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+6\right)^{2}}=\sqrt{\frac{225}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+6=\frac{15}{2} x+6=-\frac{15}{2}
Whakarūnātia.
x=\frac{3}{2} x=-\frac{27}{2}
Me tango 6 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}