Tauwehe
4\left(x-3\right)\left(x+4\right)
Aromātai
4\left(x-3\right)\left(x+4\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
4\left(x^{2}+x-12\right)
Tauwehea te 4.
a+b=1 ab=1\left(-12\right)=-12
Whakaarohia te x^{2}+x-12. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei x^{2}+ax+bx-12. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,12 -2,6 -3,4
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -12.
-1+12=11 -2+6=4 -3+4=1
Tātaihia te tapeke mō ia takirua.
a=-3 b=4
Ko te otinga te takirua ka hoatu i te tapeke 1.
\left(x^{2}-3x\right)+\left(4x-12\right)
Tuhia anō te x^{2}+x-12 hei \left(x^{2}-3x\right)+\left(4x-12\right).
x\left(x-3\right)+4\left(x-3\right)
Tauwehea te x i te tuatahi me te 4 i te rōpū tuarua.
\left(x-3\right)\left(x+4\right)
Whakatauwehea atu te kīanga pātahi x-3 mā te whakamahi i te āhuatanga tātai tohatoha.
4\left(x-3\right)\left(x+4\right)
Me tuhi anō te kīanga whakatauwehe katoa.
4x^{2}+4x-48=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-4±\sqrt{4^{2}-4\times 4\left(-48\right)}}{2\times 4}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-4±\sqrt{16-4\times 4\left(-48\right)}}{2\times 4}
Pūrua 4.
x=\frac{-4±\sqrt{16-16\left(-48\right)}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{-4±\sqrt{16+768}}{2\times 4}
Whakareatia -16 ki te -48.
x=\frac{-4±\sqrt{784}}{2\times 4}
Tāpiri 16 ki te 768.
x=\frac{-4±28}{2\times 4}
Tuhia te pūtakerua o te 784.
x=\frac{-4±28}{8}
Whakareatia 2 ki te 4.
x=\frac{24}{8}
Nā, me whakaoti te whārite x=\frac{-4±28}{8} ina he tāpiri te ±. Tāpiri -4 ki te 28.
x=3
Whakawehe 24 ki te 8.
x=-\frac{32}{8}
Nā, me whakaoti te whārite x=\frac{-4±28}{8} ina he tango te ±. Tango 28 mai i -4.
x=-4
Whakawehe -32 ki te 8.
4x^{2}+4x-48=4\left(x-3\right)\left(x-\left(-4\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 3 mō te x_{1} me te -4 mō te x_{2}.
4x^{2}+4x-48=4\left(x-3\right)\left(x+4\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}