Whakaoti mō x
x=\frac{\sqrt{2}-1}{2}\approx 0.207106781
x=\frac{-\sqrt{2}-1}{2}\approx -1.207106781
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x^{2}+4x=1
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
4x^{2}+4x-1=1-1
Me tango 1 mai i ngā taha e rua o te whārite.
4x^{2}+4x-1=0
Mā te tango i te 1 i a ia ake anō ka toe ko te 0.
x=\frac{-4±\sqrt{4^{2}-4\times 4\left(-1\right)}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, 4 mō b, me -1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 4\left(-1\right)}}{2\times 4}
Pūrua 4.
x=\frac{-4±\sqrt{16-16\left(-1\right)}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{-4±\sqrt{16+16}}{2\times 4}
Whakareatia -16 ki te -1.
x=\frac{-4±\sqrt{32}}{2\times 4}
Tāpiri 16 ki te 16.
x=\frac{-4±4\sqrt{2}}{2\times 4}
Tuhia te pūtakerua o te 32.
x=\frac{-4±4\sqrt{2}}{8}
Whakareatia 2 ki te 4.
x=\frac{4\sqrt{2}-4}{8}
Nā, me whakaoti te whārite x=\frac{-4±4\sqrt{2}}{8} ina he tāpiri te ±. Tāpiri -4 ki te 4\sqrt{2}.
x=\frac{\sqrt{2}-1}{2}
Whakawehe -4+4\sqrt{2} ki te 8.
x=\frac{-4\sqrt{2}-4}{8}
Nā, me whakaoti te whārite x=\frac{-4±4\sqrt{2}}{8} ina he tango te ±. Tango 4\sqrt{2} mai i -4.
x=\frac{-\sqrt{2}-1}{2}
Whakawehe -4-4\sqrt{2} ki te 8.
x=\frac{\sqrt{2}-1}{2} x=\frac{-\sqrt{2}-1}{2}
Kua oti te whārite te whakatau.
4x^{2}+4x=1
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{4x^{2}+4x}{4}=\frac{1}{4}
Whakawehea ngā taha e rua ki te 4.
x^{2}+\frac{4}{4}x=\frac{1}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
x^{2}+x=\frac{1}{4}
Whakawehe 4 ki te 4.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=\frac{1}{4}+\left(\frac{1}{2}\right)^{2}
Whakawehea te 1, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{2}. Nā, tāpiria te pūrua o te \frac{1}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+x+\frac{1}{4}=\frac{1+1}{4}
Pūruatia \frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+x+\frac{1}{4}=\frac{1}{2}
Tāpiri \frac{1}{4} ki te \frac{1}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{1}{2}\right)^{2}=\frac{1}{2}
Tauwehea x^{2}+x+\frac{1}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{1}{2}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{1}{2}=\frac{\sqrt{2}}{2} x+\frac{1}{2}=-\frac{\sqrt{2}}{2}
Whakarūnātia.
x=\frac{\sqrt{2}-1}{2} x=\frac{-\sqrt{2}-1}{2}
Me tango \frac{1}{2} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}