Whakaoti mō x
x=-2
x=\frac{3}{4}=0.75
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x^{2}+3x-6=-2x
Tangohia te 6 mai i ngā taha e rua.
4x^{2}+3x-6+2x=0
Me tāpiri te 2x ki ngā taha e rua.
4x^{2}+5x-6=0
Pahekotia te 3x me 2x, ka 5x.
a+b=5 ab=4\left(-6\right)=-24
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 4x^{2}+ax+bx-6. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,24 -2,12 -3,8 -4,6
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -24.
-1+24=23 -2+12=10 -3+8=5 -4+6=2
Tātaihia te tapeke mō ia takirua.
a=-3 b=8
Ko te otinga te takirua ka hoatu i te tapeke 5.
\left(4x^{2}-3x\right)+\left(8x-6\right)
Tuhia anō te 4x^{2}+5x-6 hei \left(4x^{2}-3x\right)+\left(8x-6\right).
x\left(4x-3\right)+2\left(4x-3\right)
Tauwehea te x i te tuatahi me te 2 i te rōpū tuarua.
\left(4x-3\right)\left(x+2\right)
Whakatauwehea atu te kīanga pātahi 4x-3 mā te whakamahi i te āhuatanga tātai tohatoha.
x=\frac{3}{4} x=-2
Hei kimi otinga whārite, me whakaoti te 4x-3=0 me te x+2=0.
4x^{2}+3x-6=-2x
Tangohia te 6 mai i ngā taha e rua.
4x^{2}+3x-6+2x=0
Me tāpiri te 2x ki ngā taha e rua.
4x^{2}+5x-6=0
Pahekotia te 3x me 2x, ka 5x.
x=\frac{-5±\sqrt{5^{2}-4\times 4\left(-6\right)}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, 5 mō b, me -6 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\times 4\left(-6\right)}}{2\times 4}
Pūrua 5.
x=\frac{-5±\sqrt{25-16\left(-6\right)}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{-5±\sqrt{25+96}}{2\times 4}
Whakareatia -16 ki te -6.
x=\frac{-5±\sqrt{121}}{2\times 4}
Tāpiri 25 ki te 96.
x=\frac{-5±11}{2\times 4}
Tuhia te pūtakerua o te 121.
x=\frac{-5±11}{8}
Whakareatia 2 ki te 4.
x=\frac{6}{8}
Nā, me whakaoti te whārite x=\frac{-5±11}{8} ina he tāpiri te ±. Tāpiri -5 ki te 11.
x=\frac{3}{4}
Whakahekea te hautanga \frac{6}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-\frac{16}{8}
Nā, me whakaoti te whārite x=\frac{-5±11}{8} ina he tango te ±. Tango 11 mai i -5.
x=-2
Whakawehe -16 ki te 8.
x=\frac{3}{4} x=-2
Kua oti te whārite te whakatau.
4x^{2}+3x+2x=6
Me tāpiri te 2x ki ngā taha e rua.
4x^{2}+5x=6
Pahekotia te 3x me 2x, ka 5x.
\frac{4x^{2}+5x}{4}=\frac{6}{4}
Whakawehea ngā taha e rua ki te 4.
x^{2}+\frac{5}{4}x=\frac{6}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
x^{2}+\frac{5}{4}x=\frac{3}{2}
Whakahekea te hautanga \frac{6}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}+\frac{5}{4}x+\left(\frac{5}{8}\right)^{2}=\frac{3}{2}+\left(\frac{5}{8}\right)^{2}
Whakawehea te \frac{5}{4}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{5}{8}. Nā, tāpiria te pūrua o te \frac{5}{8} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{5}{4}x+\frac{25}{64}=\frac{3}{2}+\frac{25}{64}
Pūruatia \frac{5}{8} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{5}{4}x+\frac{25}{64}=\frac{121}{64}
Tāpiri \frac{3}{2} ki te \frac{25}{64} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{5}{8}\right)^{2}=\frac{121}{64}
Tauwehea x^{2}+\frac{5}{4}x+\frac{25}{64}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{8}\right)^{2}}=\sqrt{\frac{121}{64}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{5}{8}=\frac{11}{8} x+\frac{5}{8}=-\frac{11}{8}
Whakarūnātia.
x=\frac{3}{4} x=-2
Me tango \frac{5}{8} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}